
SLICOT Working Note 2010-1

How a numerical rank revealing instability affects Computer
Aided Control System Design 1

Zvonimir Bujanović2 Zlatko Drmač3

January 2010

1Submitted to the ACM Transactions on Mathematical Software, December 2009. This work is
supported by the Croatian Ministry of Science, Education and Sport under grant 0372783–2750
(Spectral decompositions–numerical methods and applications). A preliminary version of this re-
port is available as Project Technical Report PTR–2009–2750–02, Department of Mathematics,
University of Zagreb.

2Department of Mathematics, University of Zagreb, Croatia; Email: zbujanov@math.hr
3Department of Mathematics, University of Zagreb, Croatia; Email drmac@math.hr

Abstract

Since numerical libraries are used in engineering design in a variety of industrial applications, it is
important that their numerical reliability is the top priority of both the developers of numerical algorithms
and users from industry. Following that principle, we have examined a state of the art control library
(case study: SLICOT) with respect to use of rank revealing subroutines in computing various canonical
decompositions of linear time invariant systems. This issue seems to be critical, with potential for causing
numerical catastrophes, because the deployed rank revealing code is prone to severe instabilities, causing
completely wrongly computed parameters of systems under analysis. We analyze the SLICOT library
in detail and propose modifications of critical parts of the code, based on our recent work published
in the ACM Trans. Math. Softw. 35, 2008., where we analyze and solve the problem. The proposed
modifications increase numerical reliability of all of the sixty affected subroutines. We recommend that
the developers of other control theory numerical libraries examine their codes with respect to the issue
discussed in this paper.

Keywords: numerical methods, software, Matlab, matrix equations, system identification, model re-
duction.

1 Introduction

Numerical algorithms are at the core of modern CACSD (Computer Aided Control System Design)
packages. Reliability, numerical accuracy and robustness of numerical software are top priorities of both
the developers of the software and users from industry. The SLICOT (Subroutine Library In COntrol
Theory) has been developed with those numerical aspects on the top of the list of requirements [5], [9].
SLICOT is used as computational layer in sophisticated CACSD packages such as EASY5 (since 2002.
MSC.Software, initially developed in the Boeing Company), Matlab (The MathWorks) and Scilab (INRIA,
Institut national de recherche en informatique et en automatique). Since its initial release, SLICOT has
been growing at an impressive rate, from 90 user–callable subroutines in 1997., 200 subroutines in 2004.
up to 470 subroutines in 2009. Another relevant library is the RASP, developed by the DLR (Deutsches
Zentrum für Luft- und Raumfahrt e.V.), in close collaboration with the SLICOT development teams at
NICONET WGS (Numerics In Control NETwork, Working Group on Software [13]) and NAG (Numerical
Algorithms Groups [12]).

Parallel with widening the spectrum of control problems and enriching the functionality of the library,
the numerical properties of all SLICOT subroutines remain under close watch by the numerical mathe-
matics community. The same holds for all state of the art libraries of mathematical software, because
modern developments in numerical mathematics and its applications in engineering and natural sciences
increase the expectations from mathematical software in both efficiency and numerical quality of the
output.

In this report, we focus on one particular issue – numerical rank and rank revealing software. Numer-
ical rank revealing is one of the important tasks performed by SLICOT subroutines, very often in course
of computation of various canonical representations of a LTI system

Eẋ = Ax+ Bu
y = Cx+ Du.

(1)

Why are we interested in this? In [6], we described a subtle numerical instability in the LAPACK [1]
rank revealing QR factorization software (the subroutines xGEQPF, xGEQP3, x ∈ {S,D,C,Z}). The
problem, that goes back to LINPACK [11] (subroutines xQRDC) and to the strategy of down–dating
partial column norms that are required during the pivoting process, can cause severe failure of any
computation based on pivoted QR factorization (e.g. least squares solvers). Our solution to the problem
has been included in the LAPACK 3.1. release, and thus calling the new xGEQP3 and xGEQPF in other
subroutines automatically resolves the issue. However, since LINPACK (in the 1970s and the 1980s)
and LAPACK (since the 1990s) have been the source of inspiration and of model routines for matrix
computations, the numerical bug has spread to many other libraries where, undetected, silently interferes
with subtle decisions about the numerical rank.

The goal of this report is to raise a warning flag and to point to subroutines in the SLICOT library
that are at high risk. More precisely, we have identified sixty of them (out of 470). The most effective
and at the same time the most horrifying description of the problem is as follows:

Few strategically placed "WRITE(*,*) variable" statements in the affected subroutines, requiring just
written output of certain variables, can completely change the computed properties of (1). Other substan-
tial variations of the output can be obtained by changing the compiler and optimizer options.

So, for instance, one " WRITE(*,*) variable" statement can completely change the computed Kronecker
indices of (1), or the computed zeros of the periodic descriptor system (See e.g. the algorithm in [15]). This
is certainly undesired behavior, even if the computation is backward stable, and even if the computation
is doomed to fail, due to ill–conditioning.

A tricky point here is that the problem occurs only at certain distance to singularity, and the rank

1

revealing task itself is usually performed if we expect the matrix being close to singularity. And, since
many things can happen close to singularity, any ill–behavior is usually attributed to ill–conditioning and
the true problem can remain inconspicuous.

We show how to fix the problem using [6]. In this way, we contribute to better numerical reliability of
SLICOT and all CACSD platforms that use SLICOT as computing engine. We also recommend to the
developers of other libraries to examine their codes with respect to this issue.

2 The problem

Let us briefly describe the problem. The above mentioned LINPACK and LAPACK subroutines imple-
ment the Businger–Golub [4] pivoting which, for1 A ∈ Rm×n, computes a permutation matrix P , an
orthogonal Q, and an upper triangular matrix R such that

AP = Q

(
R
0

)
, where |Rii| ≥

√√√√
j∑

k=i

|Rkj |2, for all 1 ≤ i ≤ j ≤ n. (2)

Note that (2) in particular implies |Rii| ≥ |Ri+1,i+1| for i = 1, . . . , n− 1.

If the matrix A is close to a rank k matrix, and if the pivoting P performs well, then the matrix R
can be block–partitioned as

R =

(
R[11] R[12]

0 R[22]

)
, R[11] ∈ Rk×k, (3)

where ‖R[22]‖F is small. Because of (2), the index k is revealed by a sharp drop on the diagonal of R,
|Rkk| À |Rk+1,k+1| ≥ ‖R[22]‖F /

√
n− k.

The best way to understand the nature of the problem is to take a look at Figure 2 for a visual
inspection of the structural properties (2) of the computed upper triangular matrix R. In short, one
can construct an input matrix A such that the computed output violates the basic specification of the
routine – the computed upper triangular matrix is not diagonally dominant, and the diagonal entries
are not monotonically decreasing in modulus. Clearly, the problem illustrated in Figure 2 puts at high
risk any computation that is based on the pivoted QR factorization and that assumes the structure (2)
as granted. We discovered the problem during the development of a Jacobi type SVD algorithm [7], [8]
where the structure of R was heavily used.

2.1 Down–dating the partial column norms

For the reader’s convenience, we briefly describe one step of the factorization (2). Consider the k–th
elimination step. Let A(1) = A = (a1, . . . ,an) ∈ Rm×n and let

A(k)Πk=

· · ¯ · ⊕ ·
· ¯ · ⊕ ·

¥ · ~ ·
} · ∗ ·
} · ∗ ·
} · ∗ ·

, a
(k)
j =

⊕
⊕
~
∗
∗
∗

≡

x
(k)
j

η
(k)
j

y
(k)
j

 ,

η
(k)
j = ~ ≡ (A(k))kj ,

z
(k)
j =

(
η
(k)
j

y
(k)
j

)
.

(4)

Elements to be annihilated are denoted by }, and ¥ denotes the element that will contain Rkk, computed
in the k–th step, after the }’s have been eliminated.

1For the sake of brevity, and without loss of generality, we consider only real m× n matrices with m ≥ n.

2

0 50 100 150 200 250 300
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Figure 1: Matlab 6.5. computation [Q,R,P]=qr(A). The values of |Rii| (plotted as ’-ro’) and µi =
maxj=i+1:n |Rij |, i = 1 : n− 1 (plotted as ’b.’) for a particular matrix A.

Let ω
(k)
j = ‖z(k)j ‖2. The permutation Πk ensures that |Rkk| ≥ ω

(k)
j for all j ≥ k. Let Hk be

Householder reflector such that

Hk

(
η
(k)
k

y
(k)
k

)
=

(
Rkk

0

)
, and let, for j > k,

(
β
(k+1)
j

z
(k+1)
j

)
= Hkz

(k)
j . (5)

The goal is to compute ω
(k+1)
j = ‖z(k+1)

j ‖2 by a simple scalar formula with guaranteed and controlled
number of correct digits whenever numerically feasible. The values of ω(k+1)

j , j = k + 1, . . . , n will be
used in the next step to determine the next pivotal column.

It clearly holds that ω(k)
j =

√
(β

(k+1)
j)2 + ‖z(k+1)

j ‖22, and thus

ω
(k+1)
j =

√
(ω

(k)
j)2 − (β

(k+1)
j)2 = ω

(k)
j

√√√√1−
(
β
(k+1)
j

ω
(k)
j

)2

. (6)

Since initially ω
(1)
j = ‖aj‖2, each ω

(k+1)
j can be recursively computed from ω

(k)
j and β

(k+1)
j , using (6).

Of course, severe cancelations – a consequence of ill–conditioning or, equivalently, closeness to sin-
gularity, can ruin the results of the down–dating formula. LINPACK and LAPACK subroutines have
a safety device that has been installed to predict and avoid severe cancelations. Alas, one of the first
victims of a nearby singularity is the estimated distance to singularity. As a result, the safety switch
does not work properly. We refer the reader to [6] for detailed analysis and proposed solutions to this
problem.

3 How this impacts SLICOT

SLICOT contains several subroutines that explicitly use the down–dating formula (6) for the partial
column norms, and further use the computed norms to determine pivots. The list of those subroutines

3

in the Release 5.0 of SLICOT contains nine items:

AG08BY, AG8BYZ, MB02CU, MB03OY, MB03PY, MB3OYZ,

MB3PYZ, MB04GD, TG01HX.

These subroutines are called by quite a few other routines, mainly for computing various canonical
representations of LTI systems (1).

Remark 1 Determining numerical rank of a matrix is a delicate issue. Here we do not argue with the
method for revealing the numerical rank (although we could), but rather with its implementation in
numerical software. It should be mentioned here that in SLICOT the updating formula (6) has been
implemented with a safety device as in LINPACK and in LAPACK prior to the 3.1. release.

3.1 Examples

We will use MB03OY as a prototype for problem description and for explaining our proposed solution.
MB03OY is based on the LAPACK’s subroutine DGEQPF, which, as shown in [6], suffers from the
problem illustrated in Figure 2. In addition, MB03OY uses an incremental condition estimator (ICE),
similarly as xGEQPX in ACM TOMS Algorithm 782 [3], [2]. We note that xGEQPX is also blacklisted
in [6] as sensitive to the instability of the down–dating formula. In other words, the ICE cannot detect
the problem.

Example 2 This example is entirely artificial, but it perfectly well illustrates the problem. Our matrix
is a 100× 100 matrix, obtained by symmetrization of the Kahan matrix, 0.5(K(n, c) + K(n, c)T), where

K(1, c) = (1); K(n, c) =

(
1 −c − c . . . − c
0 sK(n− 1, c)

)
, c = cosψ, s = sinψ,

with a particular value of the cosine. Both the columns and the rows are nearly equilibrated in the sense
that the ratio of the largest to the smallest column (row) norm is about eight. We set the parameter
RCOND of MB03OY rather low, of the order of ε2, where ε is the machine precision. This is not essential
– the default value n2ε will also suffice. The only reason is that we want more columns to be included, to
let the down–dating formula for the column norms run longer. We reiterate here that we are not testing
the rank revealing property of the method, but its software implementation.

In this example, MB03OY computes the numerical rank as r = 49, and the neglected part of R (cf.
(3)) has the norm

‖R[22]‖F /‖R‖F ≈ ‖R(50 : 100, 50 : 100)‖F /(3.7 · 1017) ≈ 7.5 · 10−9.

Now we repeat the computation under slightly changed conditions:

In the routine MBO3OY we insert one WRITE statement. More precisely, " WRITE(*,*) TEMP2" is
inserted after the line 339 of the SLICOT file MB03OY.f.

As a result, the computed numerical rank is now r = 82 and

‖R[22]‖F /‖R‖F ≈ ‖R(83 : 100, 83 : 100)‖F /(3.7 · 1017) ≈ 6.9 · 10−34.

The results of this two runs are shown on Figure 2. Note the substantial difference between the two
results, and remember that the two routines differ in one WRITE statement. It is instructive to check
the absolute values of the diagonal entries of R[11] and the column norms of the R[22] block in the partition

4

0

50

100 0

20

40

60

80

100

−30

−20

−10

0

10

20

0

20

40

60

80

100 0

20

40

60

80

100

−20

−10

0

10

20

MB03OY MB03OY with WRITE

r=49

r=82

Figure 2: Example 2: Left: The matrix R computed by MB03OY, shown by meshz(log10(abs(R))). The
computed numerical rank is r = 49. Right: The matrix R computed with MB03OY, with "WRITE(*,*)
TEMP2" statement added after the line 339 in MB03OY.f. The computed numerical rank is r = 82.

(3). See Figure 3. Due to an undetected cancelation in the down–dating, small column appeared to the
pivoting device much bigger than it actually was, and it was called in as pivotal. The ICE detected the
drop on the diagonal, and declared numerical rank, tacitly assuming that the rest of the matrix is even
smaller. A WRITE statement in a critical moment caused kicking the key variable from the processor’s
long register into memory (to be printed out) causing one rounding that was enough to change the
rounding history and to change the computed numerical rank from r = 49 to r = 82.

Example 3 In this 90× 90 example, we set the RCOND parameter to the realistic value of n2ε, which
is also used in SLICOT. The matrix is obtained from K(n, c) by copying its strict upper triangle into its
strict lower triangle, with opposite signs. The rank computed by MB03OY was r = 58, and the same
subroutine with the WRITE statement added after the line 339 computed r = 89. See Figure 4. A
severe underestimate of the numerical rank is caused by the unfortunate fact that, during the pivoted
QR factorization, the smallest column in the sub–matrix appeared (according to the down–dated norms)
as the dominant one and was thus declared pivotal.2 The ICE detected sharp peak and terminated the
process. Here κ2(R(1 : 58, 1 : 58)) ≈ 4.9 · 107 and κ2(R(1 : 59, 1 : 59)) ≈ 3.1 · 1021. The remaining
columns are considered small, but the neglected part R[22] of R (cf. (3)) in this case is ≈ 2.9 · 1010.
(Had the sharp increase in the condition number been, as observed by the ICE in MB03OY, just below
1/(n2ε), the procedure would have taken the 59th column into the leading (1, 1) block, and the computed
numerical rank would have been at least 59, with unnecessarily ill–conditioned block R[11].) On the other
hand, the modified routine (with the WRITE statement) has the neglected part of norm ≈ 3.4 · 10−13.
Also, in this case κ2(R(1 : 89, 1 : 89)) ≈ 3.4 · 1011.

Remark 4 The mere fact that a WRITE statement can change the computed numerical rank, and then
e.g. the computed canonical structure of the system (1) is disturbing, and it certainly justifies the

2In fact, it can happen that null vector is taken as pivotal, while the remaining columns have huge norms!

5

0 20 40 60 80 100
10

−10

10
−5

10
0

10
5

10
10

10
15

10
20

MB03OY

0 20 40 60 80 100
10

−2

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

MB03OY with WRITE TEMP2

Figure 3: Example 2: Left: The absolute values of the diagonal entries of R[11] and the column norms
of the R[22] block in the matrix R computed by MB03OY. Right: The absolute values of the diagonal
entries of R[11] and the column norms of the R[22] block in the matrix R computed with MB03OY, with
"WRITE(*,*) TEMP2" statement added after the line 339 in MB03OY.f.

0 20 40 60 80 100
10

−2

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

MB03OY

0 20 40 60 80 100
10

−15

10
−10

10
−5

10
0

10
5

10
10

10
15

10
20

MB03OY with WRITE TEMP2

Figure 4: Example 3: Left: The absolute values of the diagonal entries of R[11] and the column norms
of the R[22] block in the matrix R computed by MB03OY. Right: The absolute values of the diagonal
entries of R[11] and the column norms of the R[22] block in the matrix R computed with MB03OY, with
"WRITE(*,*) TEMP2" statement added after the line 339 in MB03OY.f.

6

effort to resolve the issue. In the next section we list sixty SLICOT routines3 whose results can be
manipulated by strategically placed WRITE statements, or changing compiler options. We underline here
that this is not a programming bug, but a numerical instability.

Remark 5 Note that in the Examples 2, 3 we have not given the value of the cosines used to generate
the matrices. These were c = 0.8 and c = 0.653, but if the reader tries to reproduce the experiments, it
is very likely that MB03OY from his/her SLICOT library will work just fine, but some value c+ δc will
exhibit the behavior illustrated in the Example. Changing the hardware, operating system, compiler,
compiler and optimizer options can also substantially change the output. Again, we refer the reader to
[6] for more details.

Remark 6 The erratic behavior illustrated in this report is not restricted to rare artificially constructed
examples. If A is m × n of full column rank (in rank deficient case consider the maximal subset if
linearly independent columns) and Ac is obtained from A by scaling its columns to have unit Euclidean
lengths, then an analysis shows that ‖A†

c‖2 > 1/
√
ε indicates that problems with the down–dating

formula may appear and that miss–pivoting may occur. (Here ‖A†
c‖2 is the spectral norm of the Moore–

Penrose generalized inverse of Ac, and ε is the machine rounding.) Note that ‖A†
c‖2 > 1/

√
ε holds if e.g.

minD=diag κ2(AD) >
√
n√
ε
.

Example 7 Just to illustrate how the problem described in the previous two examples spreads through-
out the library, consider the SLICOT description of the subroutines TB01UD:

TB01UD computes a controllable realization for the linear time–invariant multi–input system

ẋ = Ax+Bu,
y = Cx,

where A, B, and C are n×n, n×m, and p×n matrices, respectively. The matrices A and B are reduced
by this routine to orthogonal canonical form using (and optionally accumulating) orthogonal similarity
transformations, which are also applied to C. Specifically, the system (A,B,C) is reduced to the triplet
(Ac, Bc, Cc), where Ac = ZTAZ, Bc = ZTB, Cc = CZ, with

Ac =

(
Âc ?

0 Âu

)
, Bc =

(
B̂c

0

)
,

and

Âc =

A11 A12 A13 · · · · · · A1,p−1 A1p

A21 A22 A23 · · · · · · A2,p−1 A2p

0 A32 A33 · · · · · · A3,p−1 A3p

... 0
.

...
...

... .
.

...
...

... . . Ap−1,p−2 Ap−1,p−1 Ap−1,p

0 · · · 0 · · · 0 Ap,p−1 App

, B̂c =

B1

0
0
...
0

,

where the sub–matrices B1, A21, . . . , Ap,p−1 have full row ranks (all computed using MB03OY !) and
p is the controllability index of the pair. The size of the block Âu is equal to the dimension of the
uncontrollable subspace of the pair (A,B).

Now, TB01UD is called by TB01PD, and then TB01PD is called by TD04AD, which is called by
SB10ZP, and SB10ZP is called by SB10YD, which is finally called by SB10MD, and SB10MD performs
the D-step of the D-K iterations. Thus, a robust controller design might be influenced by WRITE statements
inserted at certain places in the source code. We suspect that SLICOT is not the only control library
that might exhibit this behavior.

3The release 5 of SLICOT contains 470 routines.

7

3.2 Affected subroutines

By examining the source code of SLICOT (470 subroutines), we have identified altogether sixty routines
affected by the problem illustrated in the previous section.4 For the sake of brevity, we will only list the
routine names and indicate dependencies. For detailed descriptions of the computational tasks performed
by these subroutines the reader is referred to [14].

In the following scheme "´" is read as "is called by the subroutine", and "´:" is understood as "is
called by the following subroutines:".

1. MB03OY ´:

1.1 AB01ND ´ 1.1.1 AB01OD

1.2 AB08NX ´: 1.2.1 AB08ND
1.2.2 AB08MD ´ 1.2.2.1 AB09JD

1.3 AG08BY ´ 1.3.1 AG08BD

1.4 MB02QD ´ 1.4.1 SB01DD

1.5 TB01UD ´:

1.5.1 TB01PD ´:
1.5.1.1 TD04AD ´

1.5.1.1.1 SB10ZP ´
1.5.1.1.1.1 SB10YD ´
1.5.1.1.1.1.1 SB10MD

1.5.1.2 AB09ID

1.5.2 TB03AD ´ 1.5.2.1 TD03AD

1.5.3 TB04AY ´ 1.5.3.1 TB04AD

1.6 TG01FD ´ 1.6.1 AG08BD

2. MB04GD ´ 2.1 MB03PD

3. MB03OD ´:

3.1 IB01ND ´ 3.1.1 IB01AD ´: 3.1.1.1 IB03AD
3.1.1.2 IB03BD

3.2 IB01PD ´ 3.2.1 IB01BD ´: 3.2.1.1 IB03AD
3.2.1.2 IB03BD

3.3 IB01PY ´ 3.3.1 IB01PD ´ 3.3.1.1 IB01BD ´:

3.3.1.1.1
IB03AD
3.3.1.1.2
IB03BD

3.4 MB02QD ´ 3.4.1 SB01DD

3.5 * MB02YD ´:
3.5.1 NF01BQ ´ 3.5.1.1 NF01BP

3.5.2 MD03BY ´:
3.5.2.1 MD03BB
3.5.2.2 NF01BP

4Here we do not claim that we have found all occurrences of the problem.

8

3.6 * MD03BY ´: 3.6.1 MD03BB
3.6.2 NF01BP

3.7 * NF01BR ´:
3.7.1 NF01BP
3.7.2 NF01BQ ´ 3.7.2.1 NF01BP

4. MB3OYZ ´:

4.1 AB8NXZ ´: 4.1.1 AB08MZ
4.1.2 AB08NZ

4.2 AG8BYZ ´ AG08BZ

4.3 TG01FZ ´ AG08BZ

5. MB03PY ´ 5.1 AB08NX ´: 5.1.1 AB08MD ´ 5.1.1.1 AB09JD
5.1.2 AB08ND

6. MB3PYZ ´ 6.1 AB8NXZ ´: 6.1.1 AB08MZ
6.1.2 AB08NZ

7. MB02CU ´:

7.1. MB02GD ; 7.2. MB02HD ; 7.3. MB02ID

7.4. MB02JD ; 7.5. MB02JX

8. AG08BY ´ 8.1 AG08BD

9. AG8BYZ ´ 9.1 AG08BZ

10. TG01HX ´:

10.1 TG01HD ; 10.2 TG01ID ; 10.3 TG01JD

Remark 8 The subroutines marked with a ∗ (3.5, 3.6, 3.7) may optionally require already computed
upper triangular factor.

Remark 9 Given the fact that LINPACK (since 1970s), LAPACK (since 1992.), SLICOT (since 1997.)
have been used as computing engines by several platforms in broad spectrum of industrial applications,
and that the problem with the rank revealing software has been detected and fixed in 2006. (only in
LAPACK) may give a wrong impression that this problem is not that important. It would also be
wrong to dismiss the problem with an argument that no useful results can be expected in the case of ill–
conditioning, and to consider backward stability as a mitigating circumstance. We note that the problem
may occur at the condition number 1/

√
ε, which means that only half (roughly) of the accuracy is lost

due to the ill–conditioning. In fact, it should be clear that, from the mathematical, software engineering,
and also applications’ points of view, the issue is relevant and serious. It is not hard to imagine how
this problem may impact a mission critical design using SLICOT for large scale dense computation on a
distributed (say, heterogenous) parallel machine.

9

4 Backward compatible solution

We now describe our proposed modifications. One of the constraints in resolving this issue is backward
compatibility. In other words, the problem should be removed without changing the specifications of the
affected routines. This is a quick fix solution. A proper but not backward compatible solution also exists
and it can be obtained from the authors.

4.1 Modifications through LAPACK (MB03OD)

MB03OD computes the pivoted QR factorization by a direct call to the LAPACK’s subroutine DGEQP3,
and problems related to MB03OD are automatically solved if SLICOT is linked with LAPACK 3.1 or
later. (LAPACK 3.1 contains backward compatible resolution of the problem, see [6], [10].)

4.2 Modified source

We have identified nine subroutines that need changes in their source codes.

4.2.1 MB03OY

The critical part of the code of MB03OY starts at the line 330:

C C Update partial column norms. C
DO 30 J = I + 1, N

IF(DWORK(J).NE.ZERO) THEN
TEMP = ONE-(ABS(A(I,J))/DWORK(J))**2
TEMP = MAX(TEMP,ZERO)
TEMP2 = ONE+P05*TEMP*(DWORK(J)/DWORK(N+J))**2
IF(TEMP2.EQ.ONE) THEN

IF(M-I.GT.0) THEN
DWORK(J) = DNRM2(M-I,A(I+1,J),1)
DWORK(N+J) = DWORK(J)

ELSE
DWORK(J) = ZERO
DWORK(N+J) = ZERO

END IF
ELSE

DWORK(J) = DWORK(J)*SQRT(TEMP)
END IF

END IF
30 CONTINUE

Here P05 is a parameter with value 0.05, defined in the lines 187. and 188.

The proposed modification, based on [6], reads:

TOL3Z = DSQRT(DLAMCH(’Epsilon’))
C C Update partial column norms. C

DO 30 J = I + 1, N

10

IF(DWORK(J).NE.ZERO) THEN
TEMP = ABS(A(I,J))/DWORK(J)
TEMP = MAX(ZERO,(ONE+TEMP)*(ONE-TEMP))
TEMP2 = TEMP*(DWORK(J)/DWORK(N+J))**2
IF(TEMP2.LE.TOL3Z) THEN

IF(M-I.GT.0) THEN
DWORK(J) = DNRM2(M-I,A(I+1,J),1)
DWORK(N+J) = DWORK(J)

ELSE
DWORK(J) = ZERO
DWORK(N+J) = ZERO

END IF
ELSE

DWORK(J) = DWORK(J)*SQRT(TEMP)
END IF

END IF
30 CONTINUE

A few remarks are in order:

• The new routine requires the machine precision parameter ε, here computed using the LAPACK
function DLAMCH.

• We were not able to prove that the above modification is safe. However, the analysis that we were
able to conduct indicates that it should work well, but rather tedious estimates are inconclusive.
Further, numerical experiments have shown that the new code is hard to break. However, if the
threshold TOL3Z is lowered even only slightly below

√
ε, examples of ill–behavior can be found.

For more details, see [6].

• We have a more sophisticated and provably safe modification that requires extra N scalar locations
of workspace. More details can be obtained from the authors.

• The new code is more conservative with respect to the use of the scalar formula for updating
partial column norms. However, numerical experiments with well–behaved examples show no or
only negligible penalty in terms of efficiency (runtime). This is in particular true for a more elaborate
modification (not described here, see [6]). Increased runtime is to be expected only in cases where
more explicit norm computations are necessary – in those cases the difference between the computed
results is substantial. On the other hand, the rank revealing QR factorization is usually just a part
of a more complex algorithm, and this increased runtime is negligible, especially in light of more
sound numerical properties.

4.2.2 Other subroutines

The proposed change for MB03OY can be used as a template for modifications of the remaining eight
subroutines. We skip the details for the sake of brevity. The source codes of the modified routines can
be obtained from the authors.

4.3 Concluding remarks

We classify this problem a serious threat and strongly suggest modifications of SLICOT and other libraries
that use the LINPACK’s down–dating formula (6). The modifications discussed here, and also included

11

in [10], are quick fixes that probably (but not provably) resolve the issue, and in a backward compatible
way. A proper, more sophisticated fix is available (from the authors) and it is our hope that it will be
adopted in future releases of state of the art numerical libraries such as LAPACK and SLICOT.

In general, this example shows how a numerical ill–conditioning of a fairly simple formula can sur-
reptitiously influence the results of rather sophisticated computations based on several state of the art
packages of mathematical software. This stresses the importance of extending the numerical analysis of
an algorithm to the executable code, as well as more detailed testing.

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. D. Croz, A. Greenbaum, S. Hammarling,
A. McKenny, S. Ostrouchov, and D. Sorensen. LAPACK users’ guide, second edition. SIAM,
Philadelphia, PA, 1992.

[2] C. H. Bischof and G. Quintana-Orti. Algorithm 782: codes for rank–revealing QR factorizations of
dense matrices. ACM Transactions on Mathematical Software, 24(2):254–257, 1998.

[3] C. H. Bischof and G. Quintana-Orti. Computing rank–revealing QR factorizations of dense matrices.
ACM Transactions on Mathematical Software, 24(2):226–253, 1998.

[4] P. A. Businger and G. H. Golub. Linear least squares solutions by Householder transformations.
7:269–276, 1965.

[5] P. Van Dooren. The basics of developing numerical algorithms. IEEE Control Systems Magazine,
24(1):18–27, 2004.

[6] Z. Drmač and Z. Bujanović. On the failure of rank revealing QR factorization software – a case
study. ACM Trans. Math. Softw., 35(2):1–28, 2008.

[7] Z. Drmač and K. Veselić. New fast and accurate Jacobi SVD algorithm: I. SIAM J. Matrix Anal.
Appl., 29(4):1322–1342, 2008.

[8] Z. Drmač and K. Veselić. New fast and accurate Jacobi SVD algorithm: II. SIAM J. Matrix Anal.
Appl., 29(4):1343–1362, 2008.

[9] S. Van Huffel, V. Sima, A. Varga, S. Hammarling, and F. Delebecque. High–performance numerical
software for control. IEEE Control Systems Magazine, 24(1):60–76, 2004.

[10] LAPACK 3.1. http://netlib2.cs.utk.edu/lapack/lapack-3.1.0.changes, 2006.

[11] LINPACK. http://www.netlib.org/linpack/, 2009.

[12] NAG. http://www.nag.co.uk/, 2009.

[13] NICONET. http://www.icm.tu-bs.de/niconet/, 2009.

[14] SLICOT. http://www.slicot.org/, 2009.

[15] A. Varga and P. Van Dooren. Computing the zeros of periodic descriptor systems. Systems Control
Lett., 50(5):371–381, 2003.

12

