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Abstract

Skew-Hamiltonian /Hamiltonian matrix pencils AS — H appear in many applications, including lin-
ear quadratic optimal control problems, H,-optimization, certain multi-body systems and many other
areas in applied mathematics, physics, and chemistry. In these applications it is necessary to compute
certain eigenvalues and /or corresponding deflating subspaces of these matrix pencils. Recently developed
methods exploit and preserve the skew-Hamiltonian /Hamiltonian structure and hence increase reliability,
accuracy and performance of the computations. In this paper we describe the corresponding algorithms
whose implementations have been included in the Subroutine Library in Control Theory (SLICOT). Fur-
thermore we address some of their applications. We describe variants for real and complex problems with
versions for factored and unfactored matrices S.

Keywords: Deflating subspaces, eigenvalue reordering, generalized eigenvalues, generalized Schur form,
skew-Hamiltonian /Hamiltonian matrix pencil, software, structure-preservation.



1 Introduction

In this paper we discuss algorithms for the solution of generalized eigenvalue problems with skew-
Hamiltonian/Hamiltonian structure. We are interested in the computation of certain eigenvalues and
corresponding deflating subspaces. We have to deal with the following algebraic structures [4].

0o I,
-1, O
do not indicate the dimension with the matriz J and use it for all possible values of n.

Definition 1.1. Let J := }, where I, is the n X n identity matriz. For brevity of notation, we

(i) A matriz # € C2"*2" js Hamiltonian if (HJ)" = HJ. The Lie algebra of Hamiltonian matrices
in C?2n*27 s denoted by Hy,.

(ii) A matriz S € C**2" js skew-Hamiltonian if (S7)” = —8J. The Jordan algebra of skew-
Hamiltonian matrices in C2"*2" is denoted by SHa,,.

(iii) A matriz pencil \S — H € C?"*?" js skew-Hamiltonian/Hamiltonian if S € SHy,, and H € Hy,,.

(iv) A matriz S € C**2" js symplectic if STST = J. The Lie group of symplectic matrices in C*"*2"
is denoted by So,,.

(v) A matriz U € C?>"*2" s unitary symplectic if UTUT = T and UUT = I5,. The compact Lie group
of unitary symplectic matrices in C*"*2" is denoted by US,,.

Note that a similar definition can be given for real matrices. As a convention, all following consider-
ations also hold for real skew-Hamiltonian/Hamiltonian matrix pencils. Then, all matrices -/ must be
replaced by -7, all (skew-)Hermitian matrices become (skew-)symmetric, and unitary matrices become
orthogonal. More significant differences to the complex case are explicitly mentioned.

Skew-Hamiltonian /Hamiltonian matrix pencils satisfy certain properties which we will briefly state.

A D B F
E Af } Bl [G -BH ]
with skew-Hermitian matrices D, E and Hermitian matrices F, G. If X is a (generalized) eigenvalue of
AS —H, so is also —\. In other words, eigenvalues which are not purely imaginary, occur in pairs. For real
skew-Hamiltonian /Hamiltonian matrix pencils we also have a pairing of complex conjugate eigenvalues,
i.e., if A is an eigenvalue of A\S — #, so are also A, —\, —\. This leads to eigenvalue pairs (A, —\) if X is
purely real or purely imaginary, or otherwise to eigenvalue quadruples ()\, X, =, —5\). The structure of
skew-Hamiltonian /Hamiltonian matrix pencils is preserved under J -congruence transformations, that is,
AS —H = JPH JT(A\S — H)P with nonsingular P is again skew-Hamiltonian /Hamiltonian. If we choose
‘P unitary, we additionally preserve the condition of the problem. In this way there is hope that we can
choose a unitary J-congruence transformation to transform A\S —H into a condensed form which reveals
its eigenvalues and deflating subspaces. A suitable candidate for this condensed form is the structured
Schur form, i.e., we compute a unitary matrix Q such that

511 S12 o Hll H12
0o SH 0 -—-HE

Every skew-Hamiltonian /Hamiltonian matrix pencil can be written as A\S—H = A

TJOHETT(ANS —H)Q = A [

with the subpencil A\S1; — H;1 in generalized Schur form, where S is upper triangular, Hy; is upper tri-
angular (upper quasi-triangular in the real case), S5 is skew-Hermitian, and H;, is Hermitian. However,
a structured Schur form does not necessarily exist. Conditions for the existence are proven in [I7, [18] for
the complex case or in [26] for the real case. This problem can be circumvented by embedding AS — H
into a skew-Hamiltonian /Hamiltonian matrix pencil of double dimension in an appropriate way, as ex-
plained in Section |3} Throughout this paper we denote by A_(S,H), Ao(S,H), AL (S,H) the set of finite
eigenvalues of AS — H with negative, zero, and positive real parts, respectively. The set of infinite eigen-
values is denoted by A (S,H). Multiple eigenvalues are repeated in A_(S,H), Ag(S,H), A+ (S, H), and



Ao (S, H) according to their algebraic multiplicity. The set of all eigenvalues counted according to mul-
tiplicity is A(S, 7). Similarly, we denote by Def_(S,H), Defo(S,H), Def (S, H), and Def(S,H) the
right deflating subspaces corresponding to A_(S,H), Ao(S,H), A+ (S, H), and A (S, H), respectively.

2 Applications

2.1 Linear-Quadratic Optimal Control

First we consider the continuous-time, infinite horizon, linear-quadratic optimal control problem:
choose a control function u(t) to minimize the cost functional

s [T [ 5] e

subject to the linear time-invariant descriptor system
Ei(t) = Az(t) + Bu(t), w(ty) = a°. (2)

Here, u(t) € C™ is control input vector, z(t) € C" is the descriptor vector, and E, A € C"*", B €
cvm @ = QHF e C*", R = R" € C™*™ § € C"*™. For well-posedness, the (m + n) x (m + n)
weighting matrix
_|Q S
R= [SH R
must be Hermitian and positive semidefinite. Typically, in addition to minimizing , the control wu(t)
must make z(¢) asymptotically stable. Under some conditions, the application of the maximum principle

[19] 22] yields as a necessary condition that the control u satisfies the two-point boundary value problem
of Euler-Lagrange equations

() (1)
E |At)| = Ac [n(t)| . a(to) =2,  lim BT pu(t) =0, (3)
a(t) u(t) o
with the matrix pencil
E 0 0 A 0 B
Ao —A.=A|0 —EH ol-|Q AF 3
0 0 0 S pH R
Assuming that the matrix R is nonsingular, we can substitute u(t) = —R™* (S"x(t) + B¥ p(t)) and

system (3] simplifies to
a(t)] _ o, fa(t) _ .0 . H _
S { )| = H L(t)} . x(to) =z, thjgoE wu(t) =0,

with the skew-Hamiltonian/Hamiltonian matrix pencil

AS—H=2AX

(E 0 A— BR'SH —BR™'BH
H|— —1gH —1gH\H| " (4)
|0 E SR7'SH —Q —(A-BR'SH)
The generalized algebraic Riccati equation associated to the skew-Hamiltonian /Hamiltonian matrix pencil
is given by [14]
0=Q—SR'S" + X" (A- BR'S") + (A— BR™'s")" X — X" (BR™'B") X,

- u ()
EfiX = Xx"p.



Under certain conditions the optimal control w.(t) that stabilizes the descriptor system can be con-
structed by using a stabilizing solution X, of . The matrix X, can be obtained by computing the
deflating subspace of associated to the finite eigenvalues with negative real parts and to some purely
imaginary and infinite eigenvalues. Note, that when the matrix R is singular, the problem becomes much
more involved. Then, one has to consider so-called (generalized) Lur’e equations instead of Riccati equa-
tions. However, there is also a connection between Lur’e equations and skew-Hamiltonian/Hamiltonian
and related even matrix pencils [24] 25].

2.2 H.-Optimization

Similar structures as in Subsection occur in Hso-optimization [I6]. Consider a descriptor system of
the form

Ei(t) = Az(t) + Byw(t) + Bau(t),
P 2(t) = Cra(t) + Duw(t) + Dizu(t), — (to) =2’ (6)
y(t) = Caz(t) + Dayw(t) + Dagu(t),
where E, A € R"*" B, € R**™ C; € RP¥*™ and D;; € RP+*™i for 4, j = 1,2. In this system,
z(t) € R™ is the (generalized) state vector, u(t) € R™2 is the control input vector, and w(t) € R™ is

an exogenous input that may include noise, linearization errors, and unmodeled dynamics. The vector
y(t) € RP2 contains measured outputs, while z(¢) € RP? is a regulated output or an estimation error.

The H,, control problem is usually formulated in the frequency domain. For this we need the space
HPX™ which consists of all CP*™-valued functions that are analytic and bounded in the open right
half-plane C*. For F' € HPX™ the Hoo-norm is defined by

HFHHOO i= SUp Omax (F(s)),
seCt

where opax (F'(s)) denotes the maximal singular value of the matrix F'(s). In robust control, |[F|l,, is
used as a measure of the worst-case influence of the disturbances w on the output z, where in this case
F is the transfer function mapping noise or disturbance inputs to error signals [27]. Solving the optimal
‘Hoo control problem is the task of designing a dynamic controller

K. {Ea‘:(t) = A#(t) + By(1), -
C (

with B, A € RN*N B e RN*p2 ¢ ¢ Rm2*N [ ¢ R™2%P2 gyuch that the closed-loop system resulting
from inserting into (@, that is,

E.T(t) = (A + BQ.DZlCQ) l’(t) + BQZQCA’.%(t) + (Bl + BQDZngl) w(t),
Ei(t) = BZngx(t) + (A + BZlDQQC’) j?(t) + BZ1D21w(t), (8)

Z(t) = (Cl —|— D12Z2DCQ> Qﬁ(t) —|— Dlgzgéi'(t) + (Dll + D12DZ1D21) w(t)7

-1 R -1
with 77 = (Ip2 — D22D) ,and Zy = (Im2 — DD22) has the following properties:

i) System ({8) is internally stable, that is, the solution gf(t) of the system with w = 0 is asymptotically
(t)

. . x@)]
stable, i.e., tlirgo |:i'(t):| =0.



(ii) The closed-loop transfer function T%,, from w to z satisfies T, € HEL*™ and is minimized in the
Hoo-norm.

Closely related to the optimal H., control problem is the modified optimal H, control problem. For a
given descriptor system of the form @ we search the infimum value v for which there exists an internally
stabilizing dynamic controller of the form such that the corresponding closed-loop system satisfies
T € HEZ™ with || T4, < 7. For the construction of optimal controllers, one can make use of the

following even matrix pencils (see [23] for a definition and related software)

[ 0 —AET — AT 0 0 —ClT
ANE— A 0 —B; —B5 0
ANy — My (y) = 0 —BY —’Ln, 0 -Di |, (9)
0 —BQT 0 0 —D1T2
—C4 0 —Diy1 =D -1,
and ~
0 —-AE - A 0 0 —B;
AET — AT 0 —C;f —02T 0
)\NJ - M,](’y) = 0 —Ol —’}/QIpl 0 —D11 5 (].0)
0 —Cs 0 0 —D1o
—Bf 0 —Dﬂ —DTQ —I,

which can be transformed to skew-Hamiltonian /Hamiltonian structure by using the method used in [3, 26].
Using appropriate deflating subspaces of the matrix pencils @D and it is possible to state conditions
for the existence of an optimal H., controller. Then we can check if these conditions are fulfilled for a
given value of v. Using a bisection scheme we can iteratively refine v until a wanted accuracy is achieved
(see [16l 5] for details). Note that the transformation to skew-Hamiltonian/Hamiltonian structure is
done in order to compute the deflating subspaces in a structure-preserving manner which is still an open
problem for even matrix pencils. Finally, when a suboptimal value v has been found, one can compute
the actual controller. The controller formulas are rather cumbersome and are therefore omitted. For
details, see [15].

2.3 L.-Norm Computation

Finally, we briefly describe a method to compute the L,.,-norm of an LTI system using skew-Hamiltoni-
an/Hamiltonian matrix pencils [26, [6] [7]. This norm plays an important role in robust control or model
order reduction (see [} 20, 27] and references therein). Consider a descriptor system

Ei(t) = Az(t) + Bu(t),

Cx(t) + Du(t), (11)

<

—~
~

~—
I

with £, A € R™*" B € R**™ (C € RP*™ D € RP*™ and descriptor vector x(¢) € R", control vector
u(t) € R™, and output vector y(t) € RP. For such a system its transfer function is given by

G(s):=C(sE— A 'B+D,

which directly maps inputs to outputs in the frequency domain [10]. We define the space RLEX™ of all
proper rational p X m-matrix-valued transfer functions which are bounded on the imaginary axis. The
natural norm of this space is the L,.,-norm, defined by

G|l = sup omax (G(iw)) -
weR



Consider the skew-Hamiltonian/Hamiltonian matrix pencils

E 0 A—-BRDTC —yBR'BT
AN — M(v) = A [O ET:| - [ ’yCTS_lC —AT 4 CTDR BT (12)
with the matrices R = DT D —+21,,, and S = DDT —~+2[,. It can be shown that if A\E — A has no purely
imaginary eigenvalue and vy > miﬁ Omax (G (iw)) is not a singular value of D, then ||G||, >~ if and only
we o0

if AN — M () has purely imaginary eigenvalues. In this way we can again use an iterative scheme to
improve the value of v until a wanted accuracy for the £.,-norm is achieved.

3 Theory and Algorithm Description

In this section we briefly describe the theory behind the algorithms that we will use. We refer to [4] 2]
for a very detailed analysis of the algorithms. We consider complex and real problems separately since
there are significant differences in the theory. We also distinguish the cases of unfactored and factored
skew-Hamiltonian matrices S. Note that the skew-Hamiltonian matrices in , and the skew-
Hamiltonian matrices resulting from appropriate transformations of the skew-symmetric matrices in @,
(10) are block-diagonal and hence admit a factorization

S=gz"7g7z. (13)
. E 0 I 0 ..
For example, if § = | |, then Z = |/ oy |. The factorization can be understood as a

Cholesky-like decomposition of S with respect to the indefinite inner product (z,y) := zf! Jy, since
JZHFT is the adjoint of Z with respect to (-,-). We also say that a skew-Hamiltonian matrix S is
J -semidefinite, if it admits a factorization of the form . Hence, in our implementation we distinguish
the cases that the full matrix S or just its "Cholesky factor” Z is given. In all cases we apply an embedding
strategy to the matrix pencil AS — H to avoid the problem of non-existence of a structured Schur form.

3.1 The Complex Case

Let AS —H be a given complex skew-Hamiltonian/Hamiltonian matrix pencil with [J-semidefinite skew-
Hamiltonian part S = JZ7 77 Z. We split the skew-Hamiltonian matrix iH =: N' = N + iN3, where
N is real skew-Hamiltonian and N5 is real Hamiltonian, i.e.,

PGy

N = [H1 FT

:| ’ Gl = _G{7 Hl = _Hif7

F2 G2 T T

Ny = , Ga=G;, Hy=H,,

2 |:H2 _Fg:| 2 2 2 2

and Fj, G;, H; € R"*" for j =1, 2. We define the matrices
I, 0 0 O
V2 [Iy, il 0 0 I, 0
e h ol B I S PR 4y

0o o0 o0 I,

By using the embedding Bys := diag (N, ./\7) we obtain that

Fl *FQ Gl *G2
F2 F1 G2 Gl
H, —-H,| FI FT
H, H, |-FI FT

B = X By X, =

(15)



is a real 4n x 4n skew-Hamiltonian matrix. Similarly, we define

[z 0 [gzigT 0 _[s o] _
Bz = |:0 Z:|’ BT.—[ 0 jZHJT:|7 BS'_[O S]—BTBZ~

It can be shown that
B = XBzX., Bs:=XPBrx., BS:=X"BsA. (16)

are all real. Hence,

MBS — By = X (\Bs — By) X = X[ (PS(;N AS?NDXC

is a real 4n x 4n skew-Hamiltonian /skew-Hamiltonian matrix pencil. To compute the eigenvalues of this
matrix pencil we can compute the structured decomposition of the following theorem [4].

Theorem 3.1. Let AS — N be a real, regular skew-Hamiltonian/skew-Hamiltonian matriz pencil with
S =JZTJTZ. Then there exist a real orthogonal matriz Q € R?"*2" and a real orthogonal symplectic
matriz U € R?"*2" such that

T N Zu Zi2
rea- [t 2. .
JQTJTNQ={N0“ %ﬂ

where Zy, and Z1, are upper triangular, Nii is upper quasi triangular and Nio is skew-symmetric.
Moreover,

JATIT(AS —N)Q = A [ZQTQZM Z32 209 — Z1T2222] _ {Nu N12]

0 71 Za9 0 N
oy S Sie Nii Nig
=: A { 0 SL| " |o N (18)
is a J-congruent skew-Hamiltonian/skew-Hamiltonian matriz pencil.
Proof. See []. O

By defining
"0 .
Bu=f | B=aB,

and using Theorem we can compute factorizations

Gc . _ 1 Tpreo_ |21 212

B :=U BZQ—{O 222],

B5, . =JQTJ"B5,Q =g J" (—iB%) Q = —iB§, = Wi Wu H|
0 — (=iNn1)

where ABg — B§, = JOTJT (\Bg — B,) Q are J-congruent complex skew-Hamiltonian/Hamiltonian
matrix pencils and )\l’;’g — l’;’% is in a structured quasi-triangular form. Then, the structured Schur form
can be obtained by further triangularizing the diagonal 2 x 2 blocks of ABg — B, via a J-congruence
transformation. From the symmetry of the eigenvalues if follows that A (S,H) = A (ZgZH, —i./\fu).
Now we can reorder the eigenvalues of )\[;’g — l’;’% to the top in order to compute the desired deflating
subspaces (corresponding to the eigenvalues with negative real parts). The following theorem makes
statements about the deflating subspaces [4].



Theorem 3.2. Let \S —H € C?>"*2" be a skew-Hamiltonian/Hamiltonian matriz pencil with J -semidefi-
nite skew-Hamiltonian matriz S = JZH JT Z. Consider the extended matrices Bz = diag (Z, Z) , Br =

diag (szjT,szjT> ,Bs = BrBz = diag (S,5), By = diag (H,—H). Let U, V, W be unitary
matrices such that

H (21 2]

U BZV = i 0 222:| - RZ>
H [T T

WY BrU = K Ton| = R,
b4 [Hu Hio]

WHByY = 0 ,sz} Ry,

where A_ (Bs,By) C A(T11211,H11) and A(T11211,Hi1) N Ay (Bs,By) = 0. Here, Z11, Ti1, H11 €

Cm>m™_ Suppose A_(S,H) contains p eigenvalues. If E;l] € C**™ qare the first m columns of V,
2

2p < m < 2n — 2p, then there are subspaces Ly and Ly such that

rangeV; = Def _(S,H) + Ly, L; C Defo(S,H)+ Defo (S, H),
range Vo = Def (S, H) + Lo, Loy C Defy(S,H) + Def oo (S, H).

If A(Ti1 211, H11) = A— (Bs, By), and {gl] , [%1] are the first m columns of U, W, respectively, then
2 2

there exist unitary matrices Qu, Qv, Qw such that

U= [Py 0]Qu, U2=[0 Py]|Qu,
Vi=[P, 0]Qv, Va=[0 Pf]Qv,
Wi=[Py 0]Qw, W2=[0 P}]Qw,
and the columns of Py, and PT‘}' form orthogonal bases of Def_(S,H) and Def (S, H), respectively.
Moreover, the matrices P, , PJ, Py, and PVT, have orthonormal columns and the following relations are
satisfied
ZP; = Py 2y, JERITP; = PyTn, MP; = Py Hp,
ZPF — P 7m, JENTTEY - PiTe, WP — P i,
Here, Zkk7 Tk}kﬁ and E[kk; k= 17 2, satisfy A (THZH,I;[H) =A (TQQZQQ,_E[Q) = A,(S,H)
Proof. See [4]. O

So, the algorithm for computing the stable deflating subspaces of a complex skew-Hamiltonian/Ha-
miltonian matrix pencil AS — H with S = 724 77T Z is as follows [4].

ALGORITHM 1. Computation of stable deflating subspaces of complex skew-Hamiltonian/Hamiltonian matriz
pencils in factored form

Input: Hamiltonian matriz H and the factor Z of S € SH,.
Output: Structured Schur form of the extended skew-Hamiltonian/Hamiltonian matriz pencil \BS — B, eigenval-

ues of A\S —H, orthonormal bases Py, , P[; of the deflating subspace Def _ (S, H) and the companion subspace,
respectively, as in Theorem[3.2



1: Set N = iH and determine the matrices B%, B as in and , respectively. Perform Algom'thm to
compute the factorization

B% — Z/ITB%Q — |:le 212:| ,

0 Z2

where Q is real orthogonal, U is real orthogonal symplectic, Z11, 23, are upper triangular and Ni1 is upper
quast triangular.

2: Apply the periodic QZ algorithm [9, [I3] to the 2 x 2 diagonal blocks of the matriz pencil NZ3 211 — N1y
to determine unitary matrices Q1, Qa, U such that U7 211Q1, Q¥ ZRU, QEN11Q1 are all upper triangular.
Define U := diag U,U), 0 := diag (Q1,Q2) and set

B: =u"Bz0, B =J0"J"B5%Q.

3: Use Algom’thmlg to determine a unitary matric Q and a unitary symplectic matriz U such that

TH ppc A le 212
U BZQ* [ O Z~22:|’

~H T ( g\ A |Hit  Hiz
Jo g ( IBN)Q—[O 77_[{11},
where Z11, Z3, Hi1 are upper triangular such that A_ (J([S’CZ)HJTB%, filgf\/) 18 contained in the spectrum
of the 2p x 2p leading principal subpencil of AZR 211 — Has.
4: Set 'V = [Ign O] XCQQQ [I(Q]p} LU = [Izn O} XJJZ]Z:[ {I[Q)p} and compute P, , P[}L, orthogonal bases of

range V and range U, respectively, using any numerically stable orthogonalization scheme.

Next we briefly discuss the algorithms which are used in Algorithm

ALGORITHM 2. Computation of a structured matriz factorization for real skew-Hamiltonian/skew-Hamilto-
nian matriz pencils in factored form

Input: A real skew-Hamiltonian matriz N' € R*™ 2" and the factor Z € R*"*®™ of S.
Output: A real orthogonal matriz Q, a real orthogonal symplectic matriz U and the structured factorization .

1: Set @ = U = Iz,. By changing the elimination order in the classical RQ decomposition, determine an
orthogonal matriz Q1 such that
o |2 Zi2
zz0m B 2],

where 711, Z% are upper triangular. Update N = JOT JTN Q1, Q := Q0.
2: Compute an orthogonal matriz Q1 and an orthogonal symplectic matriz Uy such that

. _ T %41 Zi2
Z.fulzglf.[o 222],
N- N-
N:=7J0TT"NQ = |1 7,
0 Ny,

where Z11, ZQTQ are upper triangular and N11 is upper Hessenberg. Update Q := QQ1 and U := UUy. This step
s performed by using a sequence of orthogonal and orthogonal symplectic matrices to annihilate the elements
in N in a specific order without destroying the structure of Z (see [{] for details).



3: Apply the periodic QZ algorithm [9,[13)] to the matriz pencil AZL5 711 — N1 to determine orthogonal matrices
Q1, Q2, U such that UT Z11Q1, QY ZLU are both upper triangular and Q% N11Q1 is upper quasi triangular.
Set Uy = diag (U,U), Q1 := diag (Q1,Q2). Update Z :=UF ZQ1, N := TFQTT*NQ1, Q := QQ1, U :=Ulh.

After performing Algorithm [2] the eigenvalues of the complex skew-Hamiltonian/Hamiltonian matrix
pencil AS — H can be determined by the diagonal 1 x 1 and 2 x 2 blocks of the matrices Z11, Z22, and
Nll-

Next, we describe the eigenvalue reordering technique to reorder the finite, stable eigenvalues to the
top of the matrix pencil, which enables us to compute the corresponding deflating subspaces.

ALGORITHM 3. Eigenvalue reordering for comples skew-Hamiltonian/Hamiltonian matriz pencils in factored
form

Input: Regular 2n x 2n complex skew-Hamiltonian/Hamiltonian matriz pencil \S —H with S = JzEgTz 2z =
{g VIE/] ,H = [ﬁl —fIH] with upper triangular Z, T? and H.

Output: A unitary matriz Q, a unitary symplectic matriz U, and the transformed matrices UTZQ, 7T TTHQ
which have still the same triangular form as Z and H, respectively, but the eigenvalues in A_ (S, H) are
reordered such that they occur in the leading principal subpencil of 7QT T (AS —H) Q.

1: Set Q =U = I2,. Reorder the eigenvalues in the subpencil XTHZ — H.

a) Determine unitary matrices Q1, Q2, Qs such that TH .= QETHEQ,, Z .= Q¥ ZQ., H := Q¥ HQ: are still
upper triangular but the m_ eigenvalues with negative real part are reordered to the top of \TH Z — H. Set
Q1 :=diag (Q1,Q3), Uy := diag (Q2,Q2) and update Q := QQ1, U := Ul .

b) Determine unitary matrices Q1, Q2, Q3 such that T := Q¥ THQs, Z .= Q¥ ZQ1, H := QY HQ: are still
upper triangular but the my eigenvalues with positive real part are reordered to the bottom of \THZ — H.

Set Q1 := diag (Q1,Q3) , U := diag (Q2,Q2) and update Q := QO1, U := Ulh.

2: Reorder the remaining n — m4 + 1 eigenvalues with negative real parts which are mow in the bottom right
subpencil of AS — H. Determine a unitary matriz Q1 and a unitary symplectic matriz Ui such that the
eigenvalues of top left subpencil of AS — H with positive real parts and those of the bottom right subpencil of
AS — H with negative real parts are interchanged. Update Q := QO1, U := UU, .

If the matrix S is not given in factored form, we can use the following algorithm for the computation
of the deflating subspaces [4].

ALGORITHM 4. Computation of stable deflating subspaces of complezr skew-Hamiltonian/Hamiltonian matriz
pencils in unfactored form

Input: Complex skew-Hamiltonian/Hamiltonian matriz pencil A\S — H.
Output: Structured Schur form of the extended skew-Hamiltonian/Hamiltonian matriz pencil \Bs — B5,, eigen-
values of AS — H, orthonormal basis Py, of the deflating subspace Def_ (S,H), as in Theorem .
1: Set N = iH and determine the matrices Bg, By, as in and , respectively. Perform Algorithm@ to
compute the factorization

hc T +Tpe ~_ |S11 S12
Bs=JQ'J BSQ—|:O 85]7

where Q is real orthogonal, S11 is upper triangular and Ni1 is upper quasi triangular.



2: Apply the QZ algorithm [11] to the 2 x 2 diagonal blocks of the matriz pencil AS11 _;/\/’11 to determine unitary
matrices Q1, Qa such that Q¥ S11Q1, QYN11Q1 are both upper triangular. Define Q := diag (Q1,Q2) and set

Bs =Jgo"g"Bs0, By =J0"I"B5 Q.

3: Use Algorithmla to determine a unitary matric Q such that

< Tpe s |S11 Si2
SH AT ( e\ A |Hin  Hiz
79 J’(—ﬁN)ng[O _Hﬁy

where Si1, H11 are upper triangular such that A_ (l’;’fg, —iB~,C\/) is contained in the spectrum of the 2p X 2p
leading principal subpencil of AS11 — Hur.
A~ |1 . . .
4: Set V = [Ign O} X, Q00 { (2)7’} and compute P, , an orthogonal basis of rangeV, using any numerically

stable orthogonalization scheme.

Now we present the algorithm for the computation of the structured matrix factorization for complex
matrix pencils in unfactored form.

ALGORITHM 5. Computation of a structured matriz factorization for real skew-Hamiltonian/skew-Hamilto-
nian matriz pencils in unfactored form

Input: A real skew-Hamiltonian/skew-Hamiltonian matriz pencil A\S — N.
Output: A real orthogonal matriz Q and the structured factorization .
1: Set Q = Izp,. Reduce S to skew-Hamiltonian triangular form, i.e., determine an orthogonal matriz Q1 such

that
Sll 812
0o SH

with an upper triangular matriz S11. Update N := JQlTJTNQl, Q = QO;. This step is performed by
applying a sequence of Householder reflections and Givens rotations in a specific order, see [J|] for details.
2: Reduce N to skew-Hamiltonian Hessenberg form. Determine an orthogonal matriz Q1 such that

Sll S12:|

S:=J01J"SQ: = {

0 S4

Ni1 Ni2
0 NE|’

§:=JQlJ"sQ = [
N:=JQ T NQ: = [

where S11 1s upper triangular and Ni1 is upper Hessenberg. Update Q := QQ1. This step is performed
by applying an appropriate sequence of Givens rotations to annihilate the elements in N in a specific order
without destroying the structure of S, for details see [{]].

3: Apply the QZ algorithm to the matriz pencil AS11 — N11 to determine orthogonal matrices Q1 and Q2 such that
Q73 811Q1 is upper triangular and Q3 N11Q1 is upper quasi triangular. Set Qi := diag (Q1,Q2) and update
S=JoT SO, N:=JQ1T"NQi, Q:= Q0.

Again, similar to the factored case, the eigenvalues are determined by the diagonal 1 x 1 and 2 x 2 blocks
of S11 and Ni;. Also, the following eigenvalue reordering routine is similar to the one of the factored
case.
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ALGORITHM 6. Eigenvalue reordering for complex skew-Hamiltonian/Hamiltonian matriz pencils in unfac-
tored form

Input: Regular 2n x2n complex skew-Hamiltonian/Hamiltonian matriz pencil \S —H of the form S = [ﬁ EI/;} ,

0

Output: A unitary matriz Q and the transformed matrices jQHJTSQ, TOH TTHQ which have still the same
triangular form as S and H, respectively, but the eigenvalues in A— (S,H) are reordered such that they occur
in the leading principal subpencil of QT JT (AS —H) Q.

1: Set Q = Iz,,. Reorder the eigenvalues in the subpencil A\S — H.
a) Determine unitary matrices Q1, Q2 such that S := Q¥ SQ1, H := Q¥ HQ1, are still upper triangular but

the m_ eigenvalues with negative real part are reordered to the top of A\S — H. Set Q1 := diag (Q1,Q2)
and update Q := QQ;.

b) Determine unitary matrices Q1, Qa2 such that S := Q¥ SQ:1, H := QY HQ, are still upper triangular but
the my eigenvalues with positive real part are reordered to the bottom of NS — H. Set Q1 := diag (Q1,Q2)
and update Q := Q0;.

2: Reorder the remaining n — my + 1 eigenvalues with negatie real parts which are now in the bottom right
subpencil of AS — H. Determine a unitary matric Q1 such that the eigenvalues of top left subpencil of
AS — H with positive real parts and those of the bottom right subpencil of AS — H with negative real parts are
interchanged. Update Q := QQ;.

H= {H _gH} , with upper triangular S, H.

3.2 The Real Case

We also briefly recall the theory for the real case which has some significant differences compared
to the complex case. For a very detailed description we refer to [2]. Let AS — H be a real skew-
Hamiltonian/Hamiltonian matrix pencil with J-semidefinite skew-Hamiltonian part & = J zZrgTz

N Zu Zia _|F G . .
where Z = {221 222] ,H = [H _pT| We introduce the orthogonal matrices
V2 [ Ly D
r= 5 " " ; X =
y 2 |:_I2n IQn:| y P

with P as in (14). Now we define the double-sized matrices

Z 0
82:2_0 Z}’
5. [TETIT 0 1_[7 0]g[7 01"
7_~—- 0 jZTJT - 0 j zZ 0 j 5
Bszz_‘g g}:BTBZ,
BH::;‘(-; _OH]

11



Furthermore, we define

Zin 0 Zip O
0 Zi1 0 Zp
Zonn 0 Zog 0|7
0 Z21 0 Z22

By :=X'Brx, =7 (By)" I,
By :=XTBsX, = 7 (By)" J7BY,
0 F| o0 G

By :=x"B:zX, =

F 0 G 0
r . _ T _
H 0 |-FT 0

It can be easily observed, that the 4n x 4n matrix pencil AB%s — Bj, is again real skew-Hamiltonian/Ha-
miltonian. For the computation of the eigenvalues of A\S — H we apply the following structured matrix
factorization which is also often referred to as generalized symplectic URV decomposition [2].

Theorem 3.3. Let A\S —H be a real skew-Hamiltonian/Hamiltonian matriz pencil with S = JZTJTZ.
Then there exist orthogonal matrices Q1, Qs and orthogonal symplectic matrices Uy, Us such that

FATERVAT:
o (7217 )th = |, T]
T [Zu Zio
I/{Q ZQ2 — I O Z22 ) (19)
T _[Hin Hi
Ql HQ2 - I 0 H22:| )

with the formal matriz product T Hy1 Z1' Zoy HH Ty in real periodic Schur form [9, [13], where
T, Z11, Hyy, T, Z1, are upper triangular and HZ, is upper quasi triangular.

Proof. The proof is constructive, see [2]. O

By using Theorem (with the same notation) we get the following factorization of the embedded
matrix pencil ABg — B3, with factored matrix Bs. We can compute an orthogonal matrix Q; and an
orthogonal symplectic matrix U/ such that

[T 0 | -TE 0 . .
T A | 0 Zu| 0 Zip | |Zu Zi2
WBzQ=\——0 70 0 | © |0 Znl|
L0 0| 0 Zy (20)
i OT Hyy 0 Hio _ .
N - ~HL o0 | H 0 Hu H
T +Tpr A _ 22 12 . 11 12
JX I Bul= =40 1 0 Hm| [ 0 —’HlTJ’
0o 0 |-HL o0

5 JQJ" 0 y U 0 : :
_ pT _ pT .
where @ =P [ 0 0, P,U=P [ 0 UJ P. From the condensed form (20) we can immedi

ately get the eigenvalues of \S — H as

AS,H)=A (222211,7%11) = ii\/A (T Hi Z5' 25y HLT,"). (21)

12



Note that all matrices of the product are upper triangular, except H2, which is upper quasi triangular.
Hence, the eigenvalue information can be extracted directly from the diagonal 1 x 1 or 2 x 2 blocks of
the main diagonals. Note that the finite, simple, purely imaginary eigenvalues of the initial matrix pencil
correspond to the positive eigenvalues of the generalized matrix product. Hence, these eigenvalues can be
computed without any error in their real parts. This leads to a high robustness in algorithms which require
these eigenvalues, e.g., in the L,,-norm computation [6]. However, if two purely imaginary eigenvalues
are very close they might still be slightly perturbed from imaginary axis. This essentially depends on
the Kronecker structure of a close-by skew-Hamiltonian/Hamiltonian matrix pencil with double purely
imaginary eigenvalues. This problem is similar to the Hamiltonian matrix case, see [21].

To compute the deflating subspaces we are interested in, it is necessary to compute the structured
Schur form of the embedded matrix pencils AB% b — B3;. This can be done by computing a finite number of

similarity transformations to the subpencil AZ21,Z1; — H11 to put Hip into upper quasi triangular form.
That is, we compute orthogonal matrices Qs, Q4, U3 such that

Hin= O H11Qs, 21 =UL211Q4, Zoo = UJ 22203,

Qs 0
0 Qs|’

} . Z1y = UTZ15Qs, and His = QFH15Q3 we obtain the structured Schur form of

where 211, ZL, are upper triangular and H;; is upper quasi triangular. By setting Q = o} [

- [us 0
u_u[o ”

~ - - - \T -
ABL — By, as ABS — By, with B = J (Bg) JTB and

S T 211 Zi2
By =UTBLQ = [0 ZZJ
BH — 79T TTB},Q = Hix H12T _

Now we can reorder the eigenvalues of /\lg’g — B;"_[ to the top in order to compute the desired deflating
subspaces which is similar to the complex case. Then, for the deflating subspaces we find a similar result
as Theorem [3.2] which we do not state here for brevity.

If the matrix S is not given in factored form, we need the following slightly modified version of
Theorem from [2].

Theorem 3.4. Let A\S — H be a real skew-Hamiltonian/Hamiltonian matriz pencil. Then there ezist
orthogonal matrices Q1, Qo such that

ofssa.r" = | 3| e st
L O Sll
AT
73 TS0, = [0t 8] =7 e st (22
T _[Hu Hip
Ql HQQ - I 0 H22:|

with the formal matriz product SﬁlHHTﬁlHQTQ in real periodic Schur form, where S11, Th1, H11 are upper
triangular and HI, is upper quasi triangular.

Proof. The proof is done by construction, see [2]. O

13



Then we can compute an orthogonal matrix Q such that

Sn 0 | S22 O ~ .
o Tras | 0 T | 0 Tz | |Su Si2
JQ T B5Q = 0 0 TS0 =10 s
o o | o0 T
- (23)
0 H11 0 H12
~ N ~-HL, 0 | H 0 Hii H
T T pr A _ 22 12 _Hu 12
JQL I By Q= 0 0 0 Hy | [ 0 —HL)’
0 0 |-HL 0
TJxJIT 0

with @ = PT [ ] P. The spectrum of A\S — H is given by
2

0 Q

AS,H) = ii\/A (Sy'Hn T 'HY)

which can be determined by evaluating the entries on the 1 x 1 and 2 x 2 diagonal blocks of the matrices
only. To put the matrix pencil formed of the matrices in into structured Schur form we have to
triangularize AS11 — H11, i.e., we determine orthogonal matrices Qs and Q4 such that

Sll = Q;{SllgS» Hll = Qzﬁll QB

are upper triangular and upper quasi triangular, respectively. By setting Q = o) [%3 QO ] , S12 =
4

078159y, and Hiy = QT H15Q4, we obtain the structured Schur form as

By:=JQ" T BsQ = [351 ?ﬁ]
11
By =0 g B = | Ml

By properly reordering the eigenvalues we can compute the desired deflating subspaces as explained
above. As for the complex case we give a brief description of the used algorithms for the real case from

[21.

ALGORITHM 7. Computation of stable deflating subspaces of real skew-Hamiltonian/Hamiltonian matriz pen-
cil in factored form

Input: Real Hamiltonian matriz H and the factor Z of S.

Output: Structured Schur form of the extended skew-Hamiltonian/Hamiltonian matriz pencil \Bs — By, eigenval-
ues of A\S —H, orthonormal bases Py, , P[; of the deflating subspace Def _ (S, H) and the companion subspace,
respectively, as in Theorem[3.2

1: Apply Algorithm @ to the matrices Z, JZTJT and H, and determine orthogonal matrices Q1, Qo and or-
thogonal symplectic matrices Uy, Us such that

T T T [T The
Ql (jz J )Z/{l - | 0 T22:| ’
T (2 Zis
Uy ZQ2 = 0 ZQJ ;
T _ [Hit Hiz
Ql HQQ - I 0 H22:| )

with the formal matriz product T1_11H11Z1_11Z2_2TH2TQT2_2T in real periodic Schur form, where Ti1, Z11, Hii,
T, 25 are upper triangular and HL is upper quasi triangular.

14



T 0

2: Apply AlgorithmH to determine orthogonal matrices Qz, Qa, Us such that Z11 = UL [ 0 z
11

} Q4 and

iy
Zog =UT T 0 Q3 are upper triangular and Hix = Q3 0 T Hn Q4 is upper quast triangular.
0 Z22 _H22 0
3: Update
4T —T1T2 0 L T 0 H12
Z19:= U3 { 0 Z1s Q3, Hiz:=Qj HL 0 Qs,
and set
s |21 Zie s |Hin Hae
Bz = [ 0 322:| v Bu= [ 0 *7'[1T1} '

Apply the real eigenvalue reordering method in Algom'thm to the pair (B’TZ, B~§_L) to determine an orthogonal
matriz Q and an orthogonal symplectic matriz U such that Z/{TB’TZ Q, JQATJTI;’%QA are in structured triangular

_\T -
form and A_ (.7 (B%) JTBL, B%) is contained in the leading 2p x 2p principal subpencil of A2 211 —Haa .

4: Set
V=[Ln 0 <yT {jQSJT QO2] 4 [903 904] Q) [Iép] 7
U= [l 0 (yr {L({)l 1/(1)2] P [L({)S b(f)s} u) ﬁﬂ

and compute Py, , P/, orthogonal bases of rangeV and rangeU, respectively, using any numerically stable
orthogonalization scheme.

The next algorithm describes the computation of the generalized symplectic URV decomposition which

can, e.g., be used to compute the eigenvalues of a real skew-Hamiltonian/Hamiltonian matrix pencil in
factored form.

ALGORITHM 8. Generalized symplectic URV decomposition

Input: A real 2n x 2n matriz pencil \T Z — H.

Output: Orthogonal matrices Q1, Q2, orthogonal symplectic matrices Ui, Uz and the structured factorization
(19).

1: Set Q1 = Qo = U1 = Uz = I2,,. By using different elimination orders in QR and RQ like decompositions,
determine orthogonal matrices Ql and QQ such that

AT+ |11 Ti2 2A |41 Zaa
rotr [T Tz zen [f 2

where Th1, TQE, 711, ZQTQ are n X n ~and upper triangular. Update H = Q’{?‘N[Q% Q1 := Q4 Ql, Qs := Q5 Qz.
2: Compute orthogonal matrices Q1, Q2 and orthogonal symplectic matrices Uy, Us such that

AT | T T2
T—QlTI/{1—|:O T22:|’

Hy1 Hie
0 Hal’

where Th1, Toy, Z11, Zis, Hi1 are upper triangular and Hiy is upper Hessenberg. Update Q1 := Q1 01, Oy :=
Q2Qs, Uy :=Uhlhy, and Us := Uslls. This step is performed by using a sequence of orthogonal and orthogonal
symplectic matrices to annihilate the elements in H in a specific order without destroying the structure of T
and Z (see [2] for details).

15



3: Apply the periodic QZ algorithm [9, [13] to the formal matriz product
T HuZn Zyy HysTos'
to determine orthogonal matrices Vi, Va, V3, Vi, Vs, Vs such that VQTT11V1, VQTHHV3, V4TZ11V3, (V4TZ22V5)T,

(V;gTngVl)T are all upper triangular and (V6TH22V5)T is upper quasi triangular. Set

Q1 :=diag (V2, Vs), Qo :=diag(V3,V5), U :=diag(Vi,Vi), Us :=diag(Va,Va),

and update T := QT T, Z :=UF ZQs, H := QT HO2, Q1 := Q1Q1, Q2 := Q2Qs, Uy := Urlhs, Us := Usls.

Note that the algorithm above applies to any (unstructured) matrix pencil of the form AT Z — H, but
the application of the eigenvalue formula requires the structural assumption that the pencil is skew-
Hamiltonian /Hamiltonian. Next we present the triangularization procedure needed for Step 2 of Algo-
rithm [7

ALGORITHM 9. Triangularization procedure for special matriz pencils in factored form

Input: A real matriz pencil AMAB — D = X\ {AH 0 ] {Bll 0 } — { 0 Di

0 Azz 0 Bas Doy 0
product AﬁlDlgB;QlAggDleﬁl is in real periodic Schur form with upper triangular Ai1, Aa2, Bi1, Bea, D12
and upper quasi triangular Do .

Output: Orthogonal matrices Q1, Qa, Q3 such that Q3T.AQ2, QgBQl are upper triangular and Q3TDQ1 is upper
quast triangular.

1: Apply the periodic eigenvalue reordering method introduced in [12] to the formal matriz product

} where the formal matric

A D12B3y Asy Doy BT

to determine orthogonal matrices Vi, Va, Vi, Va, Vs, Vs such that VQTAuVl, VQTDleE;, V4T322V3, V5TA22V4,
Vil D21 Vs, Vi¥ B11Vis keep their upper (quasi) triangular structure but they can be partitioned into 2 x 2 blocks
with the last diagonal blocks corresponding to all nonpositive eigenvalues of the formal product, and the first
diagonal blocks corresponding to the other eigenvalues.

2: Set Qi := diag(Vs, V), Q2 := diag(V1, Va), Qs := diag(V2, V), and update

A Ap ‘ 0 0
R R )
.A = Qg AQQ —- 0 0 A33 A34 )
0 0 0 Au
Bi1 Bio ‘ 0 0
g 0 Bn| o 0
B:=0Q: B = 0 0 | Bss Bsa |’
0 0 0 Bau
0 0 ‘ Di3 Dy
a0 0] 0 Dy
D:=0D% = D31 D3z | O 0 ’
0 Dyo 0 0

where Agy Doa Bt Arf Daz By, has only nonpositive real eigenvalues.
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3: Let P be an appropriate permutation matriz such that

Ainr 0 | A2 O )
_pT _ 0 Ass 0 Azs | |A &
A=P A=\~ T4 0 | o Al
L 0 0 Ag |
B 0 Bia 0 B
_oTpp_ | O Bss| 0 B | _|B =
B:=PBP=\—40"0 [Bm 0 | {o E]’
| 0 0 0 Bas |
0 Dis| 0 Du i
ST . D3y 0 D3s 0 . D x
P:=PPP=\"4"0 710 Du| {0 D}’
0 0 Dyo 0

and update Q1 := Q1P, Q2 := QaP, Q3 := Q3P.

4: Triangularize NAB — D, i.e., compute orthogonal matrices Q1, Q2, Qs such that A := Q3 AQ» =: {Ig Z] )

B:= 0YBO, =: {g ;] ,D:=0ip9g, =: {l()) ;j)] with upper triangular A, B, upper quasi triangular D
and unchanged /1, E, D. Update Q1 = Q1 Ql, Qo = QQQQ, 03 = 0305. ~

5: Triangularize MAB — D with an appropriate permutation matric 75, i.e, A= PTAP =: [gl Z] , B =

PTBP =: {g ;} , D = PIDP =: [? E] with upper triangular /1, B, upper quasi triangular D and

unchanged A, B, D. Update Q1 = Q1P, Qs = QoP, Q3 = QsP.

Note, that the separation of the nonpositive from the other eigenvalues of the formal matrix product
A7 D12 Byt Ay Doy Byt is performed in order to avoid perturbations of the purely imaginary eigenvalues
of skew-Hamiltonian/Hamiltonian matrix pencils. This follows from the connection of the nonpositive
eigenvalues of the matrix product and the matrix pencil AAB — D similar to . When the nonpositive
eigenvalues are separated, the triangularization of the corresponding part of AAB — D can be done by
only applying permutation matrices. When the matrix pencil is triangularized we apply the following
eigenvalue reordering algorithm.

ALGORITHM 10. FEigenvalue reordering for real skew-Hamiltonian/Hamiltonian matriz pencils in factored
form

Input: Regular 2n x 2n real skew-Hamiltonian/Hamiltonian matriz pencil A\S — H with S = TJzTgTz, 2z =

0 T 0
Output: An orthogonal matriz Q, an orthogonal symplectic matriz U, and the transformed matrices UT ZQ,
TJOTTTHQ which have still the same triangular form as Z and H, respectively, but the eigenvalues in
A_ (S, M) are reordered such that they occur in the leading principal subpencil of 7QT T (AS —H) Q.
1: Set Q =U = Iz,. Reorder the eigenvalues in the subpencil XTT7Z —H.

a) Determine orthogonal matrices Q1, Qa, Qs such that TT = QYT Qo, Z := QY ZQ1, H := QYHQ, are
still upper (quasi) triangular but the m_ eigenvalues with negative real part are reordered to the top of
XTTZ — H. Set Q1 := diag (Q1, Q3) , U1 := diag (Q2, Q2) and update Q := QQ1, U := Ulh .

b) Determine orthogonal matrices Q1, Q2, Q3 such that TT := QITTQ2, Z := Q¥ ZQ:1, H := QY HQ: are
still upper (quasi) triangular but the my eigenvalues with positive real part are reordered to the bottom of
XTTZ — H. Set Q) := diag (Q1, Q3) , U := diag (Q2, Q2) and update Q := QQ1, U := Ul .

{Z W] ,H = [H _?[T} with upper triangular Z and T7T and upper quasi triangular H.
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2: Reorder the remaining n — my + 1 eigenvalues with negatwe real parts which are now in the bottom right
subpencil of A\S — H. Determine an orthogonal matriz Q1 and an orthogonal symplectic matriz U such that
the eigenvalues of top left subpencil of \S — H with positive real parts and those of the bottom right subpencil
of AS — H with negative real parts are interchanged. Update Q := QQ1, U := Ul .

In case that we have to deal with skew-Hamiltonian/Hamiltonian matrix pencils AS — H with unfactored
matrix S we use the following algorithms.

ALGORITHM 11. Computation of stable deflating subspaces of real skew-Hamiltonian/Hamiltonian matriz
pencil in unfactored form

Input: Real skew-Hamiltonian/Hamiltonian matriz pencil AS — H.
Output: Structured Schur form of the extended skew-Hamiltonian/Hamiltonian matriz pencil \Bs — By, eigen-
values of AS — H, orthonormal basis Py, of the deflating subspace Def_ (S, H) as in Theorem .
1: Apply Algorithm to the matrices S and H and determine orthogonal matrices Q1, Qo such that

QIS8T T = 551 gﬁ] € SHay,
JOTITSQ, = |1 Tl c g,
| 0 T
T _ [Hu Hi
Q1 HO> = o H22:| ,

with the formal matriz product Sl_llHnTl_llHQTQ in real periodic Schur form, where Si1, Ti1, Hi1 are upper

triangular and Hiis upper quasi triangular.

S11 0

2: Apply Algorithm |13 to determine orthogonal matrices Qs, Qa such that S11 = or { 0 T ] Qs 1is upper
11

triangular and Hi1 = QZ [ [(irT Ii)ll] Qs is upper quasi triangular.
—15
3: Update
AT |S12 0 A7 | 0 Hi
S12:= 9y { 0 le] Qu, Hiz:= Q4 |:HIF2 0 ] Qu,
and set

r |81 Si2 s |Hin Haz
83_[0 SITJ’ B“‘[o —’Hﬂ}’

Apply the real eigenvalue reordering method in Algorithm to the pair (Bg, BL) to determine an orthogonal

matrix Q such that JQTJT (/\Bg — B%) Q is in structured Schur form and A_ (Bg, 1’5’;{) 18 contained in the
leading 2p X 2p principal subpencil of AS11 — Hi1-

4: Set
_ JouJ" o Qs 07 4\ [
V= [I2n 0] (yr |: 0 Q2:| P [ 0 Q4] Q) |: Op:| 5

and compute Py, , orthogonal basis of range V', using any numerically stable orthogonalization scheme.

The following algorithm is used to compute a structured matrix pencil decomposition which is similar to
the generalized symplectic URV decomposition.

ALGORITHM 12. Variant of the generalized symplectic URV decomposition for unfactored real skew-Hamilto-
nian/Hamiltonian matriz pencils

18



Input: A real 2n x 2n skew-Hamiltonian/Hamiltonian matriz pencil AS — H.
Output: Orthogonal matrices Q1, Q2 and the structured factorization .

1: Set Q1 = Qa = Ia,. Reduce S to skew-Hamiltonian triangular form, i.e., determine an orthogonal matriz Q;
such that

= ~ S S
S=9fsgag’ ="
0 Si
with an upper triangular matriz S11. Update H := QT HT 01T, Q1 := Q1Q:1. This step is performed by
applying a sequence of Householder reflections and Givens rotations in a specific order, see [2] for details.
2: Set T :=S8, Qg := Jo.JT. Perform eliminations in H, i.e., compute orthogonal matrices Q1, Q2 such that

§:=07870,5% = [SH S;«Q} € SHay,,
0 Sih
T:=g0lg"Td, = |1 T2l e sy,
0 Ti1
AT, A [Hin Hiz
H-*QIHQ2*|:O Hﬂ}

where S11, Th1, Hi1 are upper triangular and HYy is upper Hessenberg. Update Q1 := Q1 01, Qs := Q2Q5.
This step is performed by applying an appropriate sequence of Givens rotations to annihilate the elements in
H in a specific order without destroying the structure of S and T, for details see [2].

3: Apply the periodic QZ algorithm [9, [I3)] to the formal matriz product

ST HL T HE,

to determine orthogonal matrices Vi, Va, Vs, Vi such that ViT S11Vs, ViL Hi1Va, Vi T Va, are all upper trian-
gular and (\@THQQVQ)T is upper quast triangular. Set

Ql = dlag (Vl, VS) 5 QQ = dlag (‘/47 ‘/2) )
and update S == QT ST T, T :=TOFS T T Qa, H := QTHQo, Q1 := Q1Q1, Qo := Q0.

Now we present the triangularization algorithm. All remarks which have been made for the factored case
analogously hold for the unfactored case.

ALGORITHM 13. Triangularization procedure for special matriz pencils in unfactored form

Input: A real matriz pencil \A—B = X\ [Agl A022} — {Bom B(;ﬂ where the formal matriz product AﬁleA;Ql B2

1s in real periodic Schur form with upper triangular Ai1, A2, Bi2 and upper quasi triangular Bai.
Output: Orthogonal matrices Q1, Q2 such that QgAQl 1s upper triangular and QgBQl s upper quasi triangular.

1: Apply the periodic eigenvalue reordering method introduced in [12] to the formal matriz product
ATy BiaAyy By

to determine orthogonal matrices Vi, Vo, V3, Vi such that V2TA11V1, VZTBng, V4TA22V3, V4TB21V1, keep
their upper (quasi) triangular structure but they can be partitioned into 2 X 2 blocks with the last diagonal

blocks corresponding to all nonpositive real eigenvalues of the formal product, and the first diagonal blocks
corresponding to the other eigenvalues.
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2: Set Q1 := diag(V1, V3), Q2 := diag(V2, V4), and update

A A ‘ 0 0
oo Lo An| 0o 0
Ai=0Q A0 = 0 0 | Ass Ass |’
0 0 0 Au
0 0 ‘ Biz B
0 0 B
B:=Q;BQ: = =

o P
=

W W

g

NN

[evllen) Nan)
[en)

where Agy Baa Ay}l Baz has only nonpositive real eigenvalues.
3: Let P be an appropriate permutation matriz such that

A 0 Ais 0 5
_ T _ 0 Ass 0 Ass | [A =
Ai=P AP = 0 0 | A O o Al”
0 0 0 A
0 Bl3 0 Bl4 -
_ T _ Bgl 0 B32 0 . B *
B:=pigp= | B 0 (Pe 0| [O B},
0 0 Bus 0

and update Q1 := Q1P, Oz := Q2P.
4: Triangularize AA — B, i.e., compute orthogonal matrices Q1, Qs such that A := O} AQ, =: [

A %

0 A},B::

OIBO; =: {g ;] with upper triangular A, upper quasi triangular B, and unchanged A, B. Update Q1 =

Qi101, Q2 = ©2Qs.
5: Triangularize MA — B with an appropriate permutation matric 75, e, A = PTAP =: [A *] , B =

0 A
PIBP =: {? ;} with upper triangular /1, upper quast triangular B and unchanged A, B. Update Q1 =
AP, Q2 = QuP.

Finally, we describe the reordering of the eigenvalues.

ALGORITHM 14. Eigenvalue reordering for real skew-Hamiltonian/Hamiltonian matriz pencils in unfactored
form

Input: Regular 2n X 2n real skew-Hamiltonian/Hamiltonian matriz pencil AS — H of the form S = {g SVV[;} ,

H
= {0 —H"
Output: An orthogonal matriz Q and the transformed matrices jQTJTSQ, TOTTTHQ which have still the
same (quasi) triangular form as S and H, respectively, but the eigenvalues in A— (S,H) are reordered such
that they occur in the leading principal subpencil of 7QTJTT (AS — H) Q.
1: Set Q = Iz,,. Reorder the eigenvalues in the subpencil A\S — H.

a) Determine orthogonal matrices Q1, Q2 such that S := Q3SQ:, H := QYHQ:, are still upper (quasi)
triangular but the m_ eigenvalues with negative real part are reordered to the top of NS — H. Set Qy :=
diag (Q1,Q2) and update Q := QQ;.

b) Determine orthogonal matrices Q1, Q2 such that S := QTSQ:, H := QI HQ, are still upper (quasi)
triangular but the my eigenvalues with positive real part are reordered to the bottom of \S — H. Set

Q1 = diag (Q1,Q2) and update Q := QQ;.

] , with upper triangular S an upper quasi triangular H.
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2: Reorder the remaining n — my + 1 eigenvalues with negatwe real parts which are now in the bottom right
subpencil of AS — H. Determine an orthogonal matriz Qi such that the eigenvalues of top left subpencil of
AS — H with positive real parts and those of the bottom right subpencil of \S — H with negative real parts are
interchanged. Update Q := QQ;.

4 Conclusion

We have presented algorithms which can be used to compute the eigenvalues and deflating subspaces of
skew-Hamiltonian /Hamiltonian matrix pencils in a structure-preserving way which may lead to higher
accuracy, reliability and computational performance. Applications which are based on matrix pencils of
this structure have been introduced to show the importance of our considerations. In Part II of this paper
[8] we describe details of the implementation for the Subroutine Library in Control Theory (SLICOT).
We furthermore present results of some numerical experiments in order to show the superiority of our
method compared to standard approaches.
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