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Abstract

Skew-Hamiltonian/Hamiltonian matrix pencils λS − H appear in many applications, including lin-
ear quadratic optimal control problems, H∞-optimization, certain multi-body systems and many other
areas in applied mathematics, physics, and chemistry. In these applications it is necessary to compute
certain eigenvalues and/or corresponding de�ating subspaces of these matrix pencils. Recently developed
methods exploit and preserve the skew-Hamiltonian/Hamiltonian structure and hence increase reliability,
accuracy and performance of the computations. In this paper we describe the corresponding algorithms
whose implementations have been included in the Subroutine Library in Control Theory (SLICOT). Fur-
thermore we address some of their applications. We describe variants for real and complex problems with
versions for factored and unfactored matrices S.
Keywords: De�ating subspaces, eigenvalue reordering, generalized eigenvalues, generalized Schur form,
skew-Hamiltonian/Hamiltonian matrix pencil, software, structure-preservation.



1 Introduction

In this paper we discuss algorithms for the solution of generalized eigenvalue problems with skew-
Hamiltonian/Hamiltonian structure. We are interested in the computation of certain eigenvalues and
corresponding de�ating subspaces. We have to deal with the following algebraic structures [4].

De�nition 1.1. Let J :=

[
0 In
−In 0

]
, where In is the n×n identity matrix. For brevity of notation, we

do not indicate the dimension with the matrix J and use it for all possible values of n.

(i) A matrix H ∈ C2n×2n is Hamiltonian if (HJ )
H

= HJ . The Lie algebra of Hamiltonian matrices
in C2n×2n is denoted by H2n.

(ii) A matrix S ∈ C2n×2n is skew-Hamiltonian if (SJ )
H

= −SJ . The Jordan algebra of skew-
Hamiltonian matrices in C2n×2n is denoted by SH2n.

(iii) A matrix pencil λS −H ∈ C2n×2n is skew-Hamiltonian/Hamiltonian if S ∈ SH2n and H ∈ H2n.

(iv) A matrix S ∈ C2n×2n is symplectic if SJSH = J . The Lie group of symplectic matrices in C2n×2n

is denoted by S2n.

(v) A matrix U ∈ C2n×2n is unitary symplectic if UJUH = J and UUH = I2n. The compact Lie group
of unitary symplectic matrices in C2n×2n is denoted by US2n.

Note that a similar de�nition can be given for real matrices. As a convention, all following consider-
ations also hold for real skew-Hamiltonian/Hamiltonian matrix pencils. Then, all matrices ·H must be
replaced by ·T , all (skew-)Hermitian matrices become (skew-)symmetric, and unitary matrices become
orthogonal. More signi�cant differences to the complex case are explicitly mentioned.

Skew-Hamiltonian/Hamiltonian matrix pencils satisfy certain properties which we will brie�y state.

Every skew-Hamiltonian/Hamiltonian matrix pencil can be written as λS−H = λ

[
A D
E AH

]
−
[
B F
G −BH

]
with skew-Hermitian matrices D, E and Hermitian matrices F, G. If λ is a (generalized) eigenvalue of
λS−H, so is also −λ̄. In other words, eigenvalues which are not purely imaginary, occur in pairs. For real
skew-Hamiltonian/Hamiltonian matrix pencils we also have a pairing of complex conjugate eigenvalues,
i.e., if λ is an eigenvalue of λS − H, so are also λ̄, −λ,−λ̄. This leads to eigenvalue pairs (λ,−λ) if λ is
purely real or purely imaginary, or otherwise to eigenvalue quadruples

(
λ, λ̄,−λ,−λ̄

)
. The structure of

skew-Hamiltonian/Hamiltonian matrix pencils is preserved under J -congruence transformations, that is,
λS̃ −H̃ := JPHJ T (λS−H)P with nonsingular P is again skew-Hamiltonian/Hamiltonian. If we choose
P unitary, we additionally preserve the condition of the problem. In this way there is hope that we can
choose a unitary J -congruence transformation to transform λS −H into a condensed form which reveals
its eigenvalues and de�ating subspaces. A suitable candidate for this condensed form is the structured
Schur form, i.e., we compute a unitary matrix Q such that

JQHJ T (λS −H)Q = λ

[
S11 S12

0 SH
11

]
−
[
H11 H12

0 −HH
11

]
with the subpencil λS11−H11 in generalized Schur form, where S11 is upper triangular, H11 is upper tri-
angular (upper quasi-triangular in the real case), S12 is skew-Hermitian, and H12 is Hermitian. However,
a structured Schur form does not necessarily exist. Conditions for the existence are proven in [17, 18] for
the complex case or in [26] for the real case. This problem can be circumvented by embedding λS − H
into a skew-Hamiltonian/Hamiltonian matrix pencil of double dimension in an appropriate way, as ex-
plained in Section 3. Throughout this paper we denote by Λ−(S,H), Λ0(S,H), Λ+(S,H) the set of �nite
eigenvalues of λS −H with negative, zero, and positive real parts, respectively. The set of in�nite eigen-
values is denoted by Λ∞(S,H). Multiple eigenvalues are repeated in Λ−(S,H), Λ0(S,H), Λ+(S,H), and
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Λ∞(S,H) according to their algebraic multiplicity. The set of all eigenvalues counted according to mul-
tiplicity is Λ(S,H). Similarly, we denote by Def−(S,H), Def0(S,H), Def+(S,H), and Def∞(S,H) the
right de�ating subspaces corresponding to Λ−(S,H), Λ0(S,H), Λ+(S,H), and Λ∞(S,H), respectively.

2 Applications

2.1 Linear-Quadratic Optimal Control

First we consider the continuous-time, in�nite horizon, linear-quadratic optimal control problem:
choose a control function u(t) to minimize the cost functional

Sc :=

∫ ∞
t0

[
x(t)
u(t)

]H [
Q S
SH R

] [
x(t)
u(t)

]
dt (1)

subject to the linear time-invariant descriptor system

Eẋ(t) = Ax(t) +Bu(t), x(t0) = x0. (2)

Here, u(t) ∈ Cm is control input vector, x(t) ∈ Cn is the descriptor vector, and E, A ∈ Cn×n, B ∈
Cn×m, Q = QH ∈ Cn×n, R = RH ∈ Cm×m, S ∈ Cn×m. For well-posedness, the (m + n) × (m + n)
weighting matrix

R =

[
Q S
SH R

]
must be Hermitian and positive semide�nite. Typically, in addition to minimizing (1), the control u(t)
must make x(t) asymptotically stable. Under some conditions, the application of the maximum principle
[19, 22] yields as a necessary condition that the control u satis�es the two-point boundary value problem
of Euler-Lagrange equations

Ec

ẋ(t)
µ̇(t)
u̇(t)

 = Ac

x(t)
µ(t)
u(t)

 , x(t0) = x0, lim
t→∞

EHµ(t) = 0, (3)

with the matrix pencil

λEc −Ac = λ

E 0 0
0 −EH 0
0 0 0

−
 A 0 B
Q AH S
SH BH R

 .
Assuming that the matrix R is nonsingular, we can substitute u(t) = −R−1

(
SHx(t) +BHµ(t)

)
and

system (3) simpli�es to

S
[
ẋ(t)
µ̇(t)

]
= H

[
x(t)
µ(t)

]
, x(t0) = x0, lim

t→∞
EHµ(t) = 0,

with the skew-Hamiltonian/Hamiltonian matrix pencil

λS −H = λ

[
E 0
0 EH

]
−
[
A−BR−1SH −BR−1BH

SR−1SH −Q −
(
A−BR−1SH

)H] . (4)

The generalized algebraic Riccati equation associated to the skew-Hamiltonian/Hamiltonian matrix pencil
is given by [14]

0 = Q− SR−1SH +XH
(
A−BR−1SH

)
+
(
A−BR−1SH

)H
X −XH

(
BR−1BH

)
X,

EHX = XHE.
(5)
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Under certain conditions the optimal control u∗(t) that stabilizes the descriptor system (2) can be con-
structed by using a stabilizing solution X∗ of (5). The matrix X∗ can be obtained by computing the
de�ating subspace of (4) associated to the �nite eigenvalues with negative real parts and to some purely
imaginary and in�nite eigenvalues. Note, that when the matrix R is singular, the problem becomes much
more involved. Then, one has to consider so-called (generalized) Lur'e equations instead of Riccati equa-
tions. However, there is also a connection between Lur'e equations and skew-Hamiltonian/Hamiltonian
and related even matrix pencils [24, 25].

2.2 H∞-Optimization

Similar structures as in Subsection 2.1 occur in H∞-optimization [16]. Consider a descriptor system of
the form

P :


Eẋ(t) = Ax(t) +B1w(t) +B2u(t),

z(t) = C1x(t) +D11w(t) +D12u(t),

y(t) = C2x(t) +D21w(t) +D22u(t),

x(t0) = x0, (6)

where E, A ∈ Rn×n, Bi ∈ Rn×mi , Ci ∈ Rpi×n, and Dij ∈ Rpi×mj for i, j = 1, 2. In this system,
x(t) ∈ Rn is the (generalized) state vector, u(t) ∈ Rm2 is the control input vector, and w(t) ∈ Rm1 is
an exogenous input that may include noise, linearization errors, and unmodeled dynamics. The vector
y(t) ∈ Rp2 contains measured outputs, while z(t) ∈ Rp1 is a regulated output or an estimation error.

The H∞ control problem is usually formulated in the frequency domain. For this we need the space
Hp×m
∞ which consists of all Cp×m-valued functions that are analytic and bounded in the open right

half-plane C+. For F ∈ Hp×m
∞ , the H∞-norm is de�ned by

‖F‖H∞
:= sup

s∈C+

σmax (F (s)) ,

where σmax (F (s)) denotes the maximal singular value of the matrix F (s). In robust control, ‖F‖H∞
is

used as a measure of the worst-case in�uence of the disturbances w on the output z, where in this case
F is the transfer function mapping noise or disturbance inputs to error signals [27]. Solving the optimal
H∞ control problem is the task of designing a dynamic controller

K :

{
Ê ˙̂x(t) = Âx̂(t) + B̂y(t),

u(t) = Ĉx̂(t) + D̂y(t),
(7)

with Ê, Â ∈ RN×N , B̂ ∈ RN×p2 , Ĉ ∈ Rm2×N , D̂ ∈ Rm2×p2 such that the closed-loop system resulting
from inserting (7) into (6), that is,

Eẋ(t) =
(
A+B2D̂Z1C2

)
x(t) +B2Z2Ĉx̂(t) +

(
B1 +B2D̂Z1D21

)
w(t),

Ê ˙̂x(t) = B̂Z1C2x(t) +
(
Â+ B̂Z1D22Ĉ

)
x̂(t) + B̂Z1D21w(t),

z(t) =
(
C1 +D12Z2D̂C2

)
x(t) +D12Z2Ĉx̂(t) +

(
D11 +D12D̂Z1D21

)
w(t),

(8)

with Z1 =
(
Ip2 −D22D̂

)−1
, and Z2 =

(
Im2 − D̂D22

)−1
has the following properties:

(i) System (8) is internally stable, that is, the solution

[
x(t)
x̂(t)

]
of the system with w ≡ 0 is asymptotically

stable, i.e., lim
t→∞

[
x(t)
x̂(t)

]
= 0.
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(ii) The closed-loop transfer function Tzw from w to z satis�es Tzw ∈ Hp1×m1
∞ and is minimized in the

H∞-norm.

Closely related to the optimal H∞ control problem is the modi�ed optimal H∞ control problem. For a
given descriptor system of the form (6) we search the in�mum value γ for which there exists an internally
stabilizing dynamic controller of the form (7) such that the corresponding closed-loop system (8) satis�es
Tzw ∈ Hp1×m1

∞ with ‖Tzw‖H∞
< γ. For the construction of optimal controllers, one can make use of the

following even matrix pencils (see [23] for a de�nition and related software)

λNH −MH(γ) =


0 −λET −AT 0 0 −CT

1

λE −A 0 −B1 −B2 0
0 −BT

1 −γ2Im1
0 −DT

11

0 −BT
2 0 0 −DT

12

−C1 0 −D11 −D12 −Ip1

 , (9)

and

λNJ −MJ(γ) =


0 −λE −A 0 0 −B1

λET −AT 0 −CT
1 −CT

2 0
0 −C1 −γ2Ip1 0 −D11

0 −C2 0 0 −D12

−BT
1 0 −DT

11 −DT
12 −Im1

 , (10)

which can be transformed to skew-Hamiltonian/Hamiltonian structure by using the method used in [3, 26].
Using appropriate de�ating subspaces of the matrix pencils (9) and (10) it is possible to state conditions
for the existence of an optimal H∞ controller. Then we can check if these conditions are ful�lled for a
given value of γ. Using a bisection scheme we can iteratively re�ne γ until a wanted accuracy is achieved
(see [16, 5] for details). Note that the transformation to skew-Hamiltonian/Hamiltonian structure is
done in order to compute the de�ating subspaces in a structure-preserving manner which is still an open
problem for even matrix pencils. Finally, when a suboptimal value γ has been found, one can compute
the actual controller. The controller formulas are rather cumbersome and are therefore omitted. For
details, see [15].

2.3 L∞-Norm Computation

Finally, we brie�y describe a method to compute the L∞-norm of an LTI system using skew-Hamiltoni-
an/Hamiltonian matrix pencils [26, 6, 7]. This norm plays an important role in robust control or model
order reduction (see [1, 20, 27] and references therein). Consider a descriptor system

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(11)

with E, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, and descriptor vector x(t) ∈ Rn, control vector
u(t) ∈ Rm, and output vector y(t) ∈ Rp. For such a system its transfer function is given by

G(s) := C (sE −A)
−1
B +D,

which directly maps inputs to outputs in the frequency domain [10]. We de�ne the space RLp×m
∞ of all

proper rational p ×m-matrix-valued transfer functions which are bounded on the imaginary axis. The
natural norm of this space is the L∞-norm, de�ned by

‖G‖L∞
:= sup

ω∈R
σmax (G(iω)) .

4



Consider the skew-Hamiltonian/Hamiltonian matrix pencils

λN −M(γ) = λ

[
E 0
0 ET

]
−
[
A−BR−1DTC −γBR−1BT

γCTS−1C −AT + CTDR−1BT

]
(12)

with the matrices R = DTD−γ2Im, and S = DDT −γ2Ip. It can be shown that if λE−A has no purely
imaginary eigenvalue and γ > min

ω∈R
σmax (G(iω)) is not a singular value of D, then ‖G‖L∞

≥ γ if and only

if λN −M(γ) has purely imaginary eigenvalues. In this way we can again use an iterative scheme to
improve the value of γ until a wanted accuracy for the L∞-norm is achieved.

3 Theory and Algorithm Description

In this section we brie�y describe the theory behind the algorithms that we will use. We refer to [4, 2]
for a very detailed analysis of the algorithms. We consider complex and real problems separately since
there are signi�cant di�erences in the theory. We also distinguish the cases of unfactored and factored
skew-Hamiltonian matrices S. Note that the skew-Hamiltonian matrices in (4), (12) and the skew-
Hamiltonian matrices resulting from appropriate transformations of the skew-symmetric matrices in (9),
(10) are block-diagonal and hence admit a factorization

S = JZHJ TZ. (13)

For example, if S =

[
E 0
0 EH

]
, then Z =

[
I 0
0 EH

]
. The factorization (13) can be understood as a

Cholesky-like decomposition of S with respect to the inde�nite inner product 〈x, y〉 := xHJ y, since
JZHJ T is the adjoint of Z with respect to 〈·, ·〉. We also say that a skew-Hamiltonian matrix S is
J -semide�nite, if it admits a factorization of the form (13). Hence, in our implementation we distinguish
the cases that the full matrix S or just its �Cholesky factor� Z is given. In all cases we apply an embedding
strategy to the matrix pencil λS −H to avoid the problem of non-existence of a structured Schur form.

3.1 The Complex Case

Let λS −H be a given complex skew-Hamiltonian/Hamiltonian matrix pencil with J -semide�nite skew-
Hamiltonian part S = JZHJ TZ. We split the skew-Hamiltonian matrix iH =: N = N1 + iN2, where
N1 is real skew-Hamiltonian and N2 is real Hamiltonian, i.e.,

N1 =

[
F1 G1

H1 FT
1

]
, G1 = −GT

1 , H1 = −HT
1 ,

N2 =

[
F2 G2

H2 −FT
2

]
, G2 = GT

2 , H2 = HT
2 ,

and Fj , Gj , Hj ∈ Rn×n for j = 1, 2. We de�ne the matrices

Yc =

√
2

2

[
I2n iI2n
I2n −iI2n

]
, P =


In 0 0 0
0 0 In 0
0 In 0 0
0 0 0 In

 , Xc = YcP. (14)

By using the embedding BN := diag
(
N , N̄

)
we obtain that

BcN := XH
c BNXc =


F1 −F2 G1 −G2

F2 F1 G2 G1

H1 −H2 FT
1 FT

2

H2 H1 −FT
2 FT

1

 (15)
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is a real 4n× 4n skew-Hamiltonian matrix. Similarly, we de�ne

BZ :=

[
Z 0
0 Z̄

]
, BT :=

[
JZHJ T 0

0 JZHJ T

]
, BS :=

[
S 0
0 S̄

]
= BT BZ .

It can be shown that

BcZ := XH
c BZXc, BcT := XH

c BT Xc, BcS := XH
c BSXc (16)

are all real. Hence,

λBcS − BcN = XH
c (λBS − BN )Xc = XH

c

([
λS −N 0

0 λS̄ − N̄

])
Xc

is a real 4n× 4n skew-Hamiltonian/skew-Hamiltonian matrix pencil. To compute the eigenvalues of this
matrix pencil we can compute the structured decomposition of the following theorem [4].

Theorem 3.1. Let λS − N be a real, regular skew-Hamiltonian/skew-Hamiltonian matrix pencil with
S = JZTJ TZ. Then there exist a real orthogonal matrix Q ∈ R2n×2n and a real orthogonal symplectic
matrix U ∈ R2n×2n such that

UTZQ =

[
Z11 Z12

0 Z22

]
,

JQTJ TNQ =

[
N11 N12

0 NT
11

]
,

(17)

where Z11 and ZT
22 are upper triangular, N11 is upper quasi triangular and N12 is skew-symmetric.

Moreover,

JQTJ T (λS −N )Q = λ

[
ZT
22Z11 ZT

22Z12 − ZT
12Z22

0 ZT
11Z22

]
−
[
N11 N12

0 NT
11

]
=: λ

[
S11 S12

0 ST
11

]
−
[
N11 N12

0 NT
11

]
(18)

is a J -congruent skew-Hamiltonian/skew-Hamiltonian matrix pencil.

Proof. See [4].

By de�ning

BH =

[
H 0
0 −H̄

]
, BcH = XH

c BHXc,

and using Theorem 3.1 we can compute factorizations

B̃cZ : = UTBcZQ =

[
Z11 Z12

0 Z22

]
,

B̃cH : = JQTJ TBcHQ = JQTJ T (−iBcN )Q = −iB̃cN =

[
−iN11 −iN12

0 − (−iN11)
H

]
,

where λB̃cS − B̃cH = JQTJ T (λBcS − Bc
H)Q are J -congruent complex skew-Hamiltonian/Hamiltonian

matrix pencils and λB̃cS − B̃cH is in a structured quasi-triangular form. Then, the structured Schur form
can be obtained by further triangularizing the diagonal 2 × 2 blocks of λB̃cS − B̃cH via a J -congruence
transformation. From the symmetry of the eigenvalues if follows that Λ (S,H) = Λ

(
ZH

22Z11,−iN11

)
.

Now we can reorder the eigenvalues of λB̃cS − B̃cH to the top in order to compute the desired de�ating
subspaces (corresponding to the eigenvalues with negative real parts). The following theorem makes
statements about the de�ating subspaces [4].
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Theorem 3.2. Let λS−H ∈ C2n×2n be a skew-Hamiltonian/Hamiltonian matrix pencil with J -semide�-
nite skew-Hamiltonian matrix S = JZHJ TZ. Consider the extended matrices BZ = diag

(
Z, Z̄

)
, BT =

diag
(
JZHJ T ,JZHJ T

)
, BS = BT BZ = diag

(
S, S̄

)
, BH = diag

(
H,−H̄

)
. Let U , V, W be unitary

matrices such that

UHBZV =

[
Z11 Z12

0 Z22

]
=: RZ ,

WHBT U =

[
T11 T12
0 T22

]
=: RT ,

WHBHV =

[
H11 H12

0 H22

]
=: RH,

where Λ− (BS ,BH) ⊂ Λ (T11Z11,H11) and Λ (T11Z11,H11) ∩ Λ+ (BS ,BH) = ∅. Here, Z11, T11, H11 ∈

Cm×m. Suppose Λ−(S,H) contains p eigenvalues. If

[
V1
V2

]
∈ C4n×m are the �rst m columns of V,

2p ≤ m ≤ 2n− 2p, then there are subspaces L1 and L2 such that

rangeV1 = Def−(S,H) + L1, L1 ⊆ Def0(S,H) + Def∞(S,H),

rangeV2 = Def+(S,H) + L2, L2 ⊆ Def0(S,H) + Def∞(S,H).

If Λ (T11Z11,H11) = Λ− (BS ,BH), and

[
U1

U2

]
,

[
W1

W2

]
are the �rst m columns of U , W, respectively, then

there exist unitary matrices QU , QV , QW such that

U1 =
[
P−U 0

]
QU , U2 =

[
0 P+

U

]
QU ,

V1 =
[
P−V 0

]
QV , V2 =

[
0 P+

V

]
QV ,

W1 =
[
P−W 0

]
QW , W2 =

[
0 P+

W

]
QW ,

and the columns of P−V and P+
V form orthogonal bases of Def−(S,H) and Def+(S,H), respectively.

Moreover, the matrices P−U , P
+
U , P

−
W , and P+

W have orthonormal columns and the following relations are
satis�ed

ZP−V = P−U Z̃11, JZHJ TP−U = P−W T̃11, HP−V = P−W H̃11,

ZP+
V = P+

U Z̃22, JZHJ TP+
U = P+

W T̃22, HP+
V = −P+

W H̃22.

Here, Z̃kk, T̃kk, and H̃kk, k = 1, 2, satisfy Λ
(
T̃11Z̃11, H̃11

)
= Λ

(
T̃22Z̃22, H̃2

)
= Λ−(S,H).

Proof. See [4].

So, the algorithm for computing the stable de�ating subspaces of a complex skew-Hamiltonian/Ha-
miltonian matrix pencil λS −H with S = JZHJ TZ is as follows [4].

ALGORITHM 1. Computation of stable de�ating subspaces of complex skew-Hamiltonian/Hamiltonian matrix
pencils in factored form

Input: Hamiltonian matrix H and the factor Z of S ∈ SHn.
Output: Structured Schur form of the extended skew-Hamiltonian/Hamiltonian matrix pencil λBc

S−Bc
H, eigenval-

ues of λS −H, orthonormal bases P−V , P
−
U of the de�ating subspace Def− (S,H) and the companion subspace,

respectively, as in Theorem 3.2.
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1: Set N = iH and determine the matrices Bc
Z ,Bc

N as in (16) and (15), respectively. Perform Algorithm 2 to
compute the factorization

B̂c
Z = UTBc

ZQ =

[
Z11 Z12

0 Z22

]
,

B̂c
N = JQTJ TBc

NQ =

[
N11 N12

0 N T
11

]
,

where Q is real orthogonal, U is real orthogonal symplectic, Z11, ZT
22 are upper triangular and N11 is upper

quasi triangular.
2: Apply the periodic QZ algorithm [9, 13] to the 2 × 2 diagonal blocks of the matrix pencil λZH

22Z11 − N11

to determine unitary matrices Q1, Q2, U such that UHZ11Q1, Q
H
2 ZH

22U, Q
H
2 N11Q1 are all upper triangular.

De�ne Û := diag (U,U) , Q̂ := diag (Q1, Q2) and set

B̃c
Z = ÛH B̂c

ZQ̂, B̃c
N = J Q̂HJ T B̂c

N Q̂.

3: Use Algorithm 3 to determine a unitary matrix Q̃ and a unitary symplectic matrix Ũ such that

ŨH B̃c
ZQ̃ =

[
Z̃11 Z̃12

0 Z̃22

]
,

J Q̃HJ T
(
−iB̃c

N

)
Q̃ =

[
H11 H12

0 −HH
11

]
,

where Z̃11, Z̃
H
22, H11 are upper triangular such that Λ−

(
J (B̃c

Z)HJ T B̃c
Z ,−iB̃c

N

)
is contained in the spectrum

of the 2p× 2p leading principal subpencil of λZ̃H
22Z̃11 −H11.

4: Set V =
[
I2n 0

]
XcQQ̂Q̃

[
I2p
0

]
, U =

[
I2n 0

]
XcUÛŨ

[
I2p
0

]
and compute P−V , P

+
U , orthogonal bases of

rangeV and rangeU , respectively, using any numerically stable orthogonalization scheme.

Next we brie�y discuss the algorithms which are used in Algorithm 1.

ALGORITHM 2. Computation of a structured matrix factorization for real skew-Hamiltonian/skew-Hamilto-
nian matrix pencils in factored form

Input: A real skew-Hamiltonian matrix N ∈ R2n×2n and the factor Z ∈ R2n×2n of S.
Output: A real orthogonal matrix Q, a real orthogonal symplectic matrix U and the structured factorization (17).

1: Set Q = U = I2n. By changing the elimination order in the classical RQ decomposition, determine an
orthogonal matrix Q1 such that

Z := ZQ1 =:

[
Z11 Z12

0 Z22

]
,

where Z11, Z
T
22 are upper triangular. Update N = JQT

1 J TNQ1, Q := QQ1.
2: Compute an orthogonal matrix Q1 and an orthogonal symplectic matrix U1 such that

Z : = UT
1 ZQ1 =:

[
Z11 Z12

0 Z22

]
,

N : = JQT
1 J TNQ1 =:

[
N11 N12

0 NT
11

]
,

where Z11, Z
T
22 are upper triangular and N11 is upper Hessenberg. Update Q := QQ1 and U := UU1. This step

is performed by using a sequence of orthogonal and orthogonal symplectic matrices to annihilate the elements
in N in a speci�c order without destroying the structure of Z (see [4] for details).
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3: Apply the periodic QZ algorithm [9, 13] to the matrix pencil λZT
22Z11 −N11 to determine orthogonal matrices

Q1, Q2, U such that UTZ11Q1, Q
T
2 Z

T
22U are both upper triangular and QT

2N11Q1 is upper quasi triangular.
Set U1 := diag (U,U) , Q1 := diag (Q1, Q2). Update Z := UT

1 ZQ1, N := JQT
1 J TNQ1, Q := QQ1, U := UU1.

After performing Algorithm 2 the eigenvalues of the complex skew-Hamiltonian/Hamiltonian matrix
pencil λS − H can be determined by the diagonal 1 × 1 and 2 × 2 blocks of the matrices Z11, Z22, and
N11.

Next, we describe the eigenvalue reordering technique to reorder the �nite, stable eigenvalues to the
top of the matrix pencil, which enables us to compute the corresponding de�ating subspaces.

ALGORITHM 3. Eigenvalue reordering for complex skew-Hamiltonian/Hamiltonian matrix pencils in factored
form

Input: Regular 2n×2n complex skew-Hamiltonian/Hamiltonian matrix pencil λS−H with S = JZHJ TZ, Z =[
Z W
0 T

]
, H =

[
H D
0 −HH

]
with upper triangular Z, TH and H.

Output: A unitary matrix Q, a unitary symplectic matrix U , and the transformed matrices UHZQ, JQHJ THQ
which have still the same triangular form as Z and H, respectively, but the eigenvalues in Λ− (S,H) are
reordered such that they occur in the leading principal subpencil of JQHJ T (λS −H)Q.

1: Set Q = U = I2n. Reorder the eigenvalues in the subpencil λTHZ −H.

a) Determine unitary matrices Q1, Q2, Q3 such that TH := QH
3 T

HQ2, Z := QH
2 ZQ1, H := QH

3 HQ1 are still
upper triangular but the m− eigenvalues with negative real part are reordered to the top of λTHZ−H. Set
Q1 := diag (Q1, Q3) , U1 := diag (Q2, Q2) and update Q := QQ1, U := UU1.

b) Determine unitary matrices Q1, Q2, Q3 such that TH := QH
3 T

HQ2, Z := QH
2 ZQ1, H := QH

3 HQ1 are still
upper triangular but the m+ eigenvalues with positive real part are reordered to the bottom of λTHZ −H.
Set Q1 := diag (Q1, Q3) , U1 := diag (Q2, Q2) and update Q := QQ1, U := UU1.

2: Reorder the remaining n − m+ + 1 eigenvalues with negative real parts which are now in the bottom right
subpencil of λS − H. Determine a unitary matrix Q1 and a unitary symplectic matrix U1 such that the
eigenvalues of top left subpencil of λS − H with positive real parts and those of the bottom right subpencil of
λS −H with negative real parts are interchanged. Update Q := QQ1, U := UU1.

If the matrix S is not given in factored form, we can use the following algorithm for the computation
of the de�ating subspaces [4].

ALGORITHM 4. Computation of stable de�ating subspaces of complex skew-Hamiltonian/Hamiltonian matrix
pencils in unfactored form

Input: Complex skew-Hamiltonian/Hamiltonian matrix pencil λS −H.
Output: Structured Schur form of the extended skew-Hamiltonian/Hamiltonian matrix pencil λBc

S − Bc
H, eigen-

values of λS −H, orthonormal basis P−V of the de�ating subspace Def− (S,H), as in Theorem 3.2.
1: Set N = iH and determine the matrices Bc

S ,Bc
N as in (16) and (15), respectively. Perform Algorithm 5 to

compute the factorization

B̂c
S = JQTJ TBc

SQ =

[
S11 S12
0 ST

11

]
,

B̂c
N = JQTJ TBc

NQ =

[
N11 N12

0 N T
11

]
,

where Q is real orthogonal, S11 is upper triangular and N11 is upper quasi triangular.
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2: Apply the QZ algorithm [11] to the 2× 2 diagonal blocks of the matrix pencil λS11−N11 to determine unitary
matrices Q1, Q2 such that QH

2 S11Q1, Q
H
2 N11Q1 are both upper triangular. De�ne Q̂ := diag (Q1, Q2) and set

B̃c
S = J Q̂HJ T B̂c

SQ̂, B̃c
N = J Q̂HJ T B̂c

N Q̂.

3: Use Algorithm 6 to determine a unitary matrix Q̃ such that

J Q̃HJ T B̃c
SQ̃ =

[
S̃11 S̃12

0 S̃H
11

]
,

J Q̃HJ T
(
−iB̃c

N

)
Q̃ =

[
H11 H12

0 −HH
11

]
,

where S̃11, H11 are upper triangular such that Λ−
(
B̃c
S ,−iB̃c

N

)
is contained in the spectrum of the 2p × 2p

leading principal subpencil of λS̃11 −H11.

4: Set V =
[
I2n 0

]
XcQQ̂Q̃

[
I2p
0

]
and compute P−V , an orthogonal basis of rangeV , using any numerically

stable orthogonalization scheme.

Now we present the algorithm for the computation of the structured matrix factorization for complex
matrix pencils in unfactored form.

ALGORITHM 5. Computation of a structured matrix factorization for real skew-Hamiltonian/skew-Hamilto-
nian matrix pencils in unfactored form

Input: A real skew-Hamiltonian/skew-Hamiltonian matrix pencil λS −N .
Output: A real orthogonal matrix Q and the structured factorization (18).
1: Set Q = I2n. Reduce S to skew-Hamiltonian triangular form, i.e., determine an orthogonal matrix Q1 such

that

S := JQT
1 J TSQ1 =

[
S11 S12

0 ST
11

]
with an upper triangular matrix S11. Update N := JQT

1 J TNQ1, Q := QQ1. This step is performed by
applying a sequence of Householder re�ections and Givens rotations in a speci�c order, see [4] for details.

2: Reduce N to skew-Hamiltonian Hessenberg form. Determine an orthogonal matrix Q1 such that

S : = JQT
1 J TSQ1 =

[
S11 S12

0 ST
11

]
,

N : = JQT
1 J TNQ1 =

[
N11 N12

0 NT
11

]
,

where S11 is upper triangular and N11 is upper Hessenberg. Update Q := QQ1. This step is performed
by applying an appropriate sequence of Givens rotations to annihilate the elements in N in a speci�c order
without destroying the structure of S, for details see [4].

3: Apply the QZ algorithm to the matrix pencil λS11−N11 to determine orthogonal matrices Q1 and Q2 such that
QT

2 S11Q1 is upper triangular and QT
2N11Q1 is upper quasi triangular. Set Q1 := diag (Q1, Q2) and update

S := JQT
1 J TSQ1, N := JQT

1 J TNQ1, Q := QQ1.

Again, similar to the factored case, the eigenvalues are determined by the diagonal 1× 1 and 2× 2 blocks
of S11 and N11. Also, the following eigenvalue reordering routine is similar to the one of the factored
case.
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ALGORITHM 6. Eigenvalue reordering for complex skew-Hamiltonian/Hamiltonian matrix pencils in unfac-
tored form

Input: Regular 2n×2n complex skew-Hamiltonian/Hamiltonian matrix pencil λS−H of the form S =

[
S W
0 SH

]
,

H =

[
H D
0 −HH

]
, with upper triangular S, H.

Output: A unitary matrix Q and the transformed matrices JQHJ TSQ, JQHJ THQ which have still the same
triangular form as S and H, respectively, but the eigenvalues in Λ− (S,H) are reordered such that they occur
in the leading principal subpencil of JQHJ T (λS −H)Q.

1: Set Q = I2n. Reorder the eigenvalues in the subpencil λS −H.

a) Determine unitary matrices Q1, Q2 such that S := QH
2 SQ1, H := QH

2 HQ1, are still upper triangular but
the m− eigenvalues with negative real part are reordered to the top of λS − H. Set Q1 := diag (Q1, Q2)
and update Q := QQ1.

b) Determine unitary matrices Q1, Q2 such that S := QH
2 SQ1, H := QH

2 HQ1, are still upper triangular but
the m+ eigenvalues with positive real part are reordered to the bottom of λS −H. Set Q1 := diag (Q1, Q2)
and update Q := QQ1.

2: Reorder the remaining n − m+ + 1 eigenvalues with negative real parts which are now in the bottom right
subpencil of λS − H. Determine a unitary matrix Q1 such that the eigenvalues of top left subpencil of
λS −H with positive real parts and those of the bottom right subpencil of λS −H with negative real parts are
interchanged. Update Q := QQ1.

3.2 The Real Case

We also brie�y recall the theory for the real case which has some signi�cant di�erences compared
to the complex case. For a very detailed description we refer to [2]. Let λS − H be a real skew-
Hamiltonian/Hamiltonian matrix pencil with J -semide�nite skew-Hamiltonian part S = JZTJ TZ

where Z =

[
Z11 Z12

Z21 Z22

]
, H =

[
F G
H −FT

]
. We introduce the orthogonal matrices

Yr =

√
2

2

[
I2n I2n
−I2n I2n

]
, Xr = YrP

with P as in (14). Now we de�ne the double-sized matrices

BZ : =

[
Z 0
0 Z

]
,

BT : =

[
JZTJ T 0

0 JZTJ T

]
=

[
J 0
0 J

]
BTZ
[
J 0
0 J

]T
,

BS : =

[
S 0
0 S

]
= BT BZ ,

BH : =

[
H 0
0 −H

]
.
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Furthermore, we de�ne

BrZ : = X T
r BZXr =


Z11 0 Z12 0
0 Z11 0 Z12

Z21 0 Z22 0
0 Z21 0 Z22

 ,
BrT : = X T

r BT Xr = J (BrZ)
T J T ,

BrS : = X T
r BSXr = J (BrZ)

T J TBrZ ,

BrH : = X T
r BHXr =


0 F 0 G
F 0 G 0
0 H 0 −FT

H 0 −FT 0

 .
It can be easily observed, that the 4n× 4n matrix pencil λBrS − Br

H is again real skew-Hamiltonian/Ha-
miltonian. For the computation of the eigenvalues of λS − H we apply the following structured matrix
factorization which is also often referred to as generalized symplectic URV decomposition [2].

Theorem 3.3. Let λS −H be a real skew-Hamiltonian/Hamiltonian matrix pencil with S = JZTJ TZ.
Then there exist orthogonal matrices Q1, Q2 and orthogonal symplectic matrices U1, U2 such that

QT
1

(
JZTJ T

)
U1 =

[
T11 T12
0 T22

]
,

UT
2 ZQ2 =

[
Z11 Z12

0 Z22

]
,

QT
1HQ2 =

[
H11 H12

0 H22

]
,

(19)

with the formal matrix product T−111 H11Z
−1
11 Z

−T
22 HT

22T
−T
22 in real periodic Schur form [9, 13], where

T11, Z11, H11, T
T
22, Z

T
22 are upper triangular and HT

22 is upper quasi triangular.

Proof. The proof is constructive, see [2].

By using Theorem 3.3 (with the same notation) we get the following factorization of the embedded
matrix pencil λBrS − BrH with factored matrix BrS . We can compute an orthogonal matrix Q̃1 and an
orthogonal symplectic matrix Ũ such that

ŨTBrZQ̃ =


TT
22 0 −TT

12 0
0 Z11 0 Z12

0 0 TT
11 0

0 0 0 Z22

 =:

[
Z̃11 Z̃12

0 Z̃22

]
,

J Q̃TJ TBrHQ̃ =


0 H11 0 H12

−HT
22 0 H12 0

0 0 0 H22

0 0 −HT
11 0

 =:

[
H̃11 H̃12

0 −H̃T
11

]
,

(20)

where Q̃ = PT

[
JQ1J T 0

0 Q2

]
P, Ũ = PT

[
U1 0
0 U2

]
P. From the condensed form (20) we can immedi-

ately get the eigenvalues of λS −H as

Λ(S,H) = Λ
(
Z̃T

22Z̃11, H̃11

)
= ±i

√
Λ
(
T−111 H11Z

−1
11 Z

−T
22 HT

22T
−T
22

)
. (21)
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Note that all matrices of the product are upper triangular, except HT
22 which is upper quasi triangular.

Hence, the eigenvalue information can be extracted directly from the diagonal 1 × 1 or 2 × 2 blocks of
the main diagonals. Note that the �nite, simple, purely imaginary eigenvalues of the initial matrix pencil
correspond to the positive eigenvalues of the generalized matrix product. Hence, these eigenvalues can be
computed without any error in their real parts. This leads to a high robustness in algorithms which require
these eigenvalues, e.g., in the L∞-norm computation [6]. However, if two purely imaginary eigenvalues
are very close they might still be slightly perturbed from imaginary axis. This essentially depends on
the Kronecker structure of a close-by skew-Hamiltonian/Hamiltonian matrix pencil with double purely
imaginary eigenvalues. This problem is similar to the Hamiltonian matrix case, see [21].

To compute the de�ating subspaces we are interested in, it is necessary to compute the structured
Schur form of the embedded matrix pencils λBrS−BrH. This can be done by computing a �nite number of
similarity transformations to the subpencil λZ̃T

22Z̃11 − H̃11 to put H̃11 into upper quasi triangular form.
That is, we compute orthogonal matrices Q3, Q4, U3 such that

H11 = QT
3 H̃11Q4, Z11 = UT

3 Z̃11Q4, Z22 = UT
3 Z̃22Q3,

where Z11, ZT
22 are upper triangular and H11 is upper quasi triangular. By setting Q = Q̃

[
Q4 0
0 Q3

]
,

U = Ũ
[
U3 0
0 U3

]
, Z12 = UT

3 Z̃12Q3, and H12 = QT
3 H̃12Q3 we obtain the structured Schur form of

λBrS − BrH as λB̃rS − B̃rH with B̃rS = J
(
B̃rZ
)T
J T B̃rZ and

B̃rZ : = UTBrZQ =

[
Z11 Z12

0 Z22

]
,

B̃rH : = JQTJ TBrHQ =

[
H11 H12

0 −HT
11

]
.

Now we can reorder the eigenvalues of λB̃rS − B̃rH to the top in order to compute the desired de�ating
subspaces which is similar to the complex case. Then, for the de�ating subspaces we �nd a similar result
as Theorem 3.2 which we do not state here for brevity.

If the matrix S is not given in factored form, we need the following slightly modi�ed version of
Theorem 3.3 from [2].

Theorem 3.4. Let λS − H be a real skew-Hamiltonian/Hamiltonian matrix pencil. Then there exist
orthogonal matrices Q1, Q2 such that

QT
1 SJQ1J T =

[
S11 S12

0 ST
11

]
∈ SH2n,

JQT
2 J TSQ2 =

[
T11 T12
0 TT

11

]
=: T ∈ SH2n,

QT
1HQ2 =

[
H11 H12

0 H22

]
,

(22)

with the formal matrix product S−111 H11T
−1
11 H

T
22 in real periodic Schur form, where S11, T11, H11 are upper

triangular and HT
22 is upper quasi triangular.

Proof. The proof is done by construction, see [2].
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Then we can compute an orthogonal matrix Q̃ such that

J Q̃TJ TBrSQ̃ =


S11 0 S12 0
0 T11 0 T12
0 0 ST

11 0
0 0 0 TT

11

 =:

[
S̃11 S̃12
0 S̃T11

]
,

J Q̃TJ TBrHQ̃ =


0 H11 0 H12

−HT
22 0 H12 0

0 0 0 H22

0 0 −HT
11 0

 =:

[
H̃11 H̃12

0 −H̃T
11

]
,

(23)

with Q̃ = PT

[
JQ1J T 0

0 Q2

]
P. The spectrum of λS −H is given by

Λ(S,H) = ±i
√

Λ
(
S−111 H11T

−1
11 H

T
22

)
which can be determined by evaluating the entries on the 1× 1 and 2× 2 diagonal blocks of the matrices
only. To put the matrix pencil formed of the matrices in (23) into structured Schur form we have to
triangularize λS̃11 − H̃11, i.e., we determine orthogonal matrices Q3 and Q4 such that

S11 = QT
4 S̃11Q3, H11 = QT

4 H̃11Q3

are upper triangular and upper quasi triangular, respectively. By setting Q = Q̃
[
Q3 0
0 Q4

]
, S12 =

QT
4 S̃12Q4, and H12 = QT

4 H̃12Q4, we obtain the structured Schur form as

B̃rS : = JQTJ TBSQ =

[
S11 S12
0 ST11

]
,

B̃rH : = JQTJ TBHQ =

[
H11 H12

0 −HT
11

]
.

By properly reordering the eigenvalues we can compute the desired de�ating subspaces as explained
above. As for the complex case we give a brief description of the used algorithms for the real case from
[2].

ALGORITHM 7. Computation of stable de�ating subspaces of real skew-Hamiltonian/Hamiltonian matrix pen-
cil in factored form

Input: Real Hamiltonian matrix H and the factor Z of S.
Output: Structured Schur form of the extended skew-Hamiltonian/Hamiltonian matrix pencil λBr

S−Br
H, eigenval-

ues of λS −H, orthonormal bases P−V , P
−
U of the de�ating subspace Def− (S,H) and the companion subspace,

respectively, as in Theorem 3.2.
1: Apply Algorithm 8 to the matrices Z, JZTJ T and H, and determine orthogonal matrices Q1, Q2 and or-

thogonal symplectic matrices U1, U2 such that

QT
1

(
JZTJ T

)
U1 =

[
T11 T12

0 T22

]
,

UT
2 ZQ2 =

[
Z11 Z12

0 Z22

]
,

QT
1HQ2 =

[
H11 H12

0 H22

]
,

with the formal matrix product T−1
11 H11Z

−1
11 Z

−T
22 HT

22T
−T
22 in real periodic Schur form, where T11, Z11, H11,

TT
22, Z

T
22 are upper triangular and HT

22 is upper quasi triangular.
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2: Apply Algorithm 9 to determine orthogonal matrices Q3, Q4, U3 such that Z11 = UT
3

[
TT
22 0
0 Z11

]
Q4 and

Z22 = UT
3

[
TT
11 0
0 Z22

]
Q3 are upper triangular and H11 = QT

3

[
0 H11

−HT
22 0

]
Q4 is upper quasi triangular.

3: Update

Z12 := UT
3

[
−TT

12 0
0 Z12

]
Q3, H12 := QT

3

[
0 H12

HT
12 0

]
Q3,

and set

B̃r
Z =

[
Z11 Z12

0 Z22

]
, B̃r

H =

[
H11 H12

0 −HT
11

]
.

Apply the real eigenvalue reordering method in Algorithm 10 to the pair
(
B̃r
Z , B̃r

H

)
to determine an orthogonal

matrix Q̂ and an orthogonal symplectic matrix Û such that ÛT B̃r
ZQ̂, J Q̂TJ T B̃r

HQ̂ are in structured triangular

form and Λ−

(
J
(
B̃r
Z

)T
J T B̃r

Z , B̃r
H

)
is contained in the leading 2p×2p principal subpencil of λZT

22Z11−H11.

4: Set

V =
[
I2n 0

](
Yr

[
JQ1J T 0

0 Q2

]
P
[
Q3 0
0 Q4

]
Q̂
)[

I2p
0

]
,

U =
[
I2n 0

](
Yr

[
U1 0
0 U2

]
P
[
U3 0
0 U3

]
Û
)[

I2p
0

]
and compute P−V , P

−
U , orthogonal bases of rangeV and rangeU , respectively, using any numerically stable

orthogonalization scheme.

The next algorithm describes the computation of the generalized symplectic URV decomposition which
can, e.g., be used to compute the eigenvalues of a real skew-Hamiltonian/Hamiltonian matrix pencil in
factored form.

ALGORITHM 8. Generalized symplectic URV decomposition

Input: A real 2n× 2n matrix pencil λT Z −H.
Output: Orthogonal matrices Q1, Q2, orthogonal symplectic matrices U1, U2 and the structured factorization

(19).
1: Set Q1 = Q2 = U1 = U2 = I2n. By using di�erent elimination orders in QR and RQ like decompositions,

determine orthogonal matrices Q̃1 and Q̃2 such that

T := Q̃T
1 T =:

[
T11 T12

0 T22

]
, Z := ZQ̃2 =:

[
Z11 Z12

0 Z22

]
,

where T11, T
T
22, Z11, Z

T
22 are n× n and upper triangular. Update H = Q̃T

1HQ̃2, Q1 := Q1Q̃1, Q2 := Q2Q̃2.
2: Compute orthogonal matrices Q̃1, Q̃2 and orthogonal symplectic matrices Ũ1, Ũ2 such that

T : = Q̃T
1 T Ũ1 =:

[
T11 T12

0 T22

]
,

Z : = ŨT
2 ZQ̃2 =:

[
Z11 Z12

0 Z22

]
,

H : = Q̃T
1HQ̃2 =:

[
H11 H12

0 H22

]
,

where T11, T
T
22, Z11, Z

T
22, H11 are upper triangular and HT

22 is upper Hessenberg. Update Q1 := Q1Q̃1, Q2 :=
Q2Q̃2, U1 := U1Ũ1, and U2 := U2Ũ2. This step is performed by using a sequence of orthogonal and orthogonal
symplectic matrices to annihilate the elements in H in a speci�c order without destroying the structure of T
and Z (see [2] for details).
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3: Apply the periodic QZ algorithm [9, 13] to the formal matrix product

T−1
11 H11Z

−1
11 Z

−T
22 HT

22T
−T
22

to determine orthogonal matrices V1, V2, V3, V4, V5, V6 such that V
T
2 T11V1, V

T
2 H11V3, V

T
4 Z11V3,

(
V T
4 Z22V5

)T
,(

V T
6 T22V1

)T
are all upper triangular and

(
V T
6 H22V5

)T
is upper quasi triangular. Set

Q̃1 := diag (V2, V6) , Q̃2 := diag (V3, V5) , Ũ1 := diag (V1, V1) , Ũ2 := diag (V4, V4) ,

and update T := Q̃T
1 T Ũ1, Z := ŨT

2 ZQ̃2, H := Q̃T
1HQ̃2, Q1 := Q1Q̃1, Q2 := Q2Q̃2, U1 := U1Ũ1, U2 := U2Ũ2.

Note that the algorithm above applies to any (unstructured) matrix pencil of the form λT Z − H, but
the application of the eigenvalue formula (21) requires the structural assumption that the pencil is skew-
Hamiltonian/Hamiltonian. Next we present the triangularization procedure needed for Step 2 of Algo-
rithm 7.

ALGORITHM 9. Triangularization procedure for special matrix pencils in factored form

Input: A real matrix pencil λAB − D = λ

[
A11 0
0 A22

] [
B11 0
0 B22

]
−
[

0 D12

D21 0

]
where the formal matrix

product A−1
11 D12B

−1
22 A

−1
22 D21B

−1
11 is in real periodic Schur form with upper triangular A11, A22, B11, B22, D12

and upper quasi triangular D21.
Output: Orthogonal matrices Q1, Q2, Q3 such that QT

3AQ2, QT
2 BQ1 are upper triangular and QT

3 DQ1 is upper
quasi triangular.

1: Apply the periodic eigenvalue reordering method introduced in [12] to the formal matrix product

A−1
11 D12B

−1
22 A

−1
22 D21B

−1
11

to determine orthogonal matrices V1, V2, V3, V4, V5, V6 such that V T
2 A11V1, V

T
2 D12V3, V

T
4 B22V3, V

T
5 A22V4,

V T
5 D21V6, V

T
1 B11V6 keep their upper (quasi) triangular structure but they can be partitioned into 2× 2 blocks

with the last diagonal blocks corresponding to all nonpositive eigenvalues of the formal product, and the �rst
diagonal blocks corresponding to the other eigenvalues.

2: Set Q1 := diag(V6, V3), Q2 := diag(V1, V4), Q3 := diag(V2, V5), and update

A : = QT
3AQ2 =:


A11 A12 0 0
0 A22 0 0

0 0 A33 A34

0 0 0 A44

 ,

B : = QT
2 BQ1 =:


B11 B12 0 0
0 B22 0 0

0 0 B33 B34

0 0 0 B44

 ,

D : = QT
3 DQ1 =:


0 0 D13 D14

0 0 0 D24

D31 D32 0 0
0 D42 0 0

 ,
where A−1

22 D24B
−1
44 A

−1
44 D42B

−1
22 has only nonpositive real eigenvalues.
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3: Let P be an appropriate permutation matrix such that

A : = PTAP =


A11 0 A12 0
0 A33 0 A34

0 0 A22 0
0 0 0 A44

 =:

[
Ã ∗
0 Â

]
,

B : = PTBP =


B11 0 B12 0
0 B33 0 B34

0 0 B22 0
0 0 0 B44

 =:

[
B̃ ∗
0 B̂

]
,

D : = PTDP =


0 D13 0 D14

D31 0 D32 0

0 0 0 D24

0 0 D42 0

 =:

[
D̃ ∗
0 D̂

]
,

and update Q1 := Q1P, Q2 := Q2P, Q3 := Q3P.

4: Triangularize λÃB̃ − D̃, i.e., compute orthogonal matrices Q̃1, Q̃2, Q̃3 such that A := Q̃T
3AQ̃2 =:

[
Ã ∗
0 Â

]
,

B := Q̃T
2 BQ̃1 =:

[
B̃ ∗
0 B̂

]
, D := Q̃T

3 DQ̃1 =:

[
D̃ ∗
0 D̂

]
with upper triangular Ã, B̃, upper quasi triangular D̃

and unchanged Â, B̂, D̂. Update Q1 = Q1Q̃1, Q2 = Q2Q̃2, Q3 = Q3Q̃3.

5: Triangularize λÂB̂ − D̂ with an appropriate permutation matrix P̂, i.e., A := P̂TAP̂ =:

[
Ã ∗
0 Â

]
, B :=

P̂TBP̂ =:

[
B̃ ∗
0 B̂

]
, D := P̂TDP̂ =:

[
D̃ ∗
0 D̂

]
with upper triangular Â, B̂, upper quasi triangular D̂ and

unchanged Ã, B̃, D̃. Update Q1 = Q1P̂, Q2 = Q2P̂, Q3 = Q3P̂.

Note, that the separation of the nonpositive from the other eigenvalues of the formal matrix product
A−111 D12B

−1
22 A

−1
22 D21B

−1
11 is performed in order to avoid perturbations of the purely imaginary eigenvalues

of skew-Hamiltonian/Hamiltonian matrix pencils. This follows from the connection of the nonpositive
eigenvalues of the matrix product and the matrix pencil λAB−D similar to (21). When the nonpositive
eigenvalues are separated, the triangularization of the corresponding part of λAB − D can be done by
only applying permutation matrices. When the matrix pencil is triangularized we apply the following
eigenvalue reordering algorithm.

ALGORITHM 10. Eigenvalue reordering for real skew-Hamiltonian/Hamiltonian matrix pencils in factored
form

Input: Regular 2n × 2n real skew-Hamiltonian/Hamiltonian matrix pencil λS − H with S = JZTJ TZ, Z =[
Z W
0 T

]
, H =

[
H D
0 −HT

]
with upper triangular Z and TT and upper quasi triangular H.

Output: An orthogonal matrix Q, an orthogonal symplectic matrix U , and the transformed matrices UTZQ,
JQTJ THQ which have still the same triangular form as Z and H, respectively, but the eigenvalues in
Λ− (S,H) are reordered such that they occur in the leading principal subpencil of JQTJ T (λS −H)Q.

1: Set Q = U = I2n. Reorder the eigenvalues in the subpencil λTTZ −H.

a) Determine orthogonal matrices Q1, Q2, Q3 such that TT := QT
3 T

TQ2, Z := QT
2 ZQ1, H := QT

3HQ1 are
still upper (quasi) triangular but the m− eigenvalues with negative real part are reordered to the top of
λTTZ −H. Set Q1 := diag (Q1, Q3) , U1 := diag (Q2, Q2) and update Q := QQ1, U := UU1.

b) Determine orthogonal matrices Q1, Q2, Q3 such that TT := QT
3 T

TQ2, Z := QT
2 ZQ1, H := QT

3HQ1 are
still upper (quasi) triangular but the m+ eigenvalues with positive real part are reordered to the bottom of
λTTZ −H. Set Q1 := diag (Q1, Q3) , U1 := diag (Q2, Q2) and update Q := QQ1, U := UU1.
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2: Reorder the remaining n − m+ + 1 eigenvalues with negative real parts which are now in the bottom right
subpencil of λS − H. Determine an orthogonal matrix Q1 and an orthogonal symplectic matrix U1 such that
the eigenvalues of top left subpencil of λS −H with positive real parts and those of the bottom right subpencil
of λS −H with negative real parts are interchanged. Update Q := QQ1, U := UU1.

In case that we have to deal with skew-Hamiltonian/Hamiltonian matrix pencils λS −H with unfactored
matrix S we use the following algorithms.

ALGORITHM 11. Computation of stable de�ating subspaces of real skew-Hamiltonian/Hamiltonian matrix
pencil in unfactored form

Input: Real skew-Hamiltonian/Hamiltonian matrix pencil λS −H.
Output: Structured Schur form of the extended skew-Hamiltonian/Hamiltonian matrix pencil λBr

S − Br
H, eigen-

values of λS −H, orthonormal basis P−V of the de�ating subspace Def− (S,H) as in Theorem 3.2.
1: Apply Algorithm 12 to the matrices S and H and determine orthogonal matrices Q1, Q2 such that

QT
1 SJQ1J T =

[
S11 S12

0 ST
11

]
∈ SH2n,

JQT
2 J TSQ2 =

[
T11 T12

0 TT
11

]
∈ SH2n,

QT
1HQ2 =

[
H11 H12

0 H22

]
,

with the formal matrix product S−1
11 H11T

−1
11 H

T
22 in real periodic Schur form, where S11, T11, H11 are upper

triangular and HT
22 is upper quasi triangular.

2: Apply Algorithm 13 to determine orthogonal matrices Q3, Q4 such that S11 = QT
4

[
S11 0
0 T11

]
Q3 is upper

triangular and H11 = QT
4

[
0 H11

−HT
22 0

]
Q3 is upper quasi triangular.

3: Update

S12 := QT
4

[
S12 0
0 T12

]
Q4, H12 := QT

4

[
0 H12

HT
12 0

]
Q4,

and set

B̃r
S =

[
S11 S12
0 ST

11

]
, B̃r

H =

[
H11 H12

0 −HT
11

]
.

Apply the real eigenvalue reordering method in Algorithm 14 to the pair
(
B̃r
S , B̃r

H

)
to determine an orthogonal

matrix Q̂ such that J Q̂TJ T
(
λB̃r
S − B̃r

H

)
Q̂ is in structured Schur form and Λ−

(
B̃r
S , B̃r

H

)
is contained in the

leading 2p× 2p principal subpencil of λS11 −H11.
4: Set

V =
[
I2n 0

](
Yr

[
JQ1J T 0

0 Q2

]
P
[
Q3 0
0 Q4

]
Q̂
)[

I2p
0

]
,

and compute P−V , orthogonal basis of rangeV , using any numerically stable orthogonalization scheme.

The following algorithm is used to compute a structured matrix pencil decomposition which is similar to
the generalized symplectic URV decomposition.

ALGORITHM 12. Variant of the generalized symplectic URV decomposition for unfactored real skew-Hamilto-
nian/Hamiltonian matrix pencils
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Input: A real 2n× 2n skew-Hamiltonian/Hamiltonian matrix pencil λS −H.
Output: Orthogonal matrices Q1, Q2 and the structured factorization (22).
1: Set Q1 = Q2 = I2n. Reduce S to skew-Hamiltonian triangular form, i.e., determine an orthogonal matrix Q̃1

such that

S := Q̃T
1 SJ Q̃1J T =

[
S11 S12

0 ST
11

]
with an upper triangular matrix S11. Update H := Q̃T

1HJ Q̃1J T , Q1 := Q1Q̃1. This step is performed by
applying a sequence of Householder re�ections and Givens rotations in a speci�c order, see [2] for details.

2: Set T := S, Q2 := JQ1J T . Perform eliminations in H, i.e., compute orthogonal matrices Q̃1, Q̃2 such that

S : = Q̃T
1 SJ Q̃1J T =

[
S11 S12

0 ST
11

]
∈ SH2n,

T : = J Q̃T
2 J TT Q̃2 =

[
T11 T12

0 TT
11

]
∈ SH2n,

H : = Q̃T
1HQ̃2 =

[
H11 H12

0 H22

]
where S11, T11, H11 are upper triangular and HT

22 is upper Hessenberg. Update Q1 := Q1Q̃1, Q2 := Q2Q̃2.
This step is performed by applying an appropriate sequence of Givens rotations to annihilate the elements in
H in a speci�c order without destroying the structure of S and T , for details see [2].

3: Apply the periodic QZ algorithm [9, 13] to the formal matrix product

S−1
11 H11T

−1
11 H

T
22

to determine orthogonal matrices V1, V2, V3, V4 such that V T
1 S11V3, V

T
1 H11V4, V

T
2 T11V4, are all upper trian-

gular and
(
V T
3 H22V2

)T
is upper quasi triangular. Set

Q̃1 := diag (V1, V3) , Q̃2 := diag (V4, V2) ,

and update S := Q̃T
1 SJ Q̃1J T , T := J Q̃T

2 J TT Q̃2, H := Q̃T
1HQ̃2, Q1 := Q1Q̃1, Q2 := Q2Q̃2.

Now we present the triangularization algorithm. All remarks which have been made for the factored case
analogously hold for the unfactored case.

ALGORITHM 13. Triangularization procedure for special matrix pencils in unfactored form

Input: A real matrix pencil λA−B = λ

[
A11 0
0 A22

]
−
[

0 B12

B21 0

]
where the formal matrix product A−1

11 B12A
−1
22 B21

is in real periodic Schur form with upper triangular A11, A22, B12 and upper quasi triangular B21.
Output: Orthogonal matrices Q1, Q2 such that QT

2AQ1 is upper triangular and QT
2 BQ1 is upper quasi triangular.

1: Apply the periodic eigenvalue reordering method introduced in [12] to the formal matrix product

A−1
11 B12A

−1
22 B21

to determine orthogonal matrices V1, V2, V3, V4 such that V T
2 A11V1, V

T
2 B12V3, V

T
4 A22V3, V

T
4 B21V1, keep

their upper (quasi) triangular structure but they can be partitioned into 2 × 2 blocks with the last diagonal
blocks corresponding to all nonpositive real eigenvalues of the formal product, and the �rst diagonal blocks
corresponding to the other eigenvalues.
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2: Set Q1 := diag(V1, V3), Q2 := diag(V2, V4), and update

A : = QT
2AQ1 =:


A11 A12 0 0
0 A22 0 0

0 0 A33 A34

0 0 0 A44

 ,

B : = QT
2 BQ1 =:


0 0 B13 B14

0 0 0 B24

B31 B32 0 0
0 B42 0 0

 ,
where A−1

22 B24A
−1
44 B42 has only nonpositive real eigenvalues.

3: Let P be an appropriate permutation matrix such that

A : = PTAP =


A11 0 A12 0
0 A33 0 A34

0 0 A22 0
0 0 0 A44

 =:

[
Ã ∗
0 Â

]
,

B : = PTBP =


0 B13 0 B14

B31 0 B32 0

0 0 0 B24

0 0 B42 0

 =:

[
B̃ ∗
0 B̂

]
,

and update Q1 := Q1P, Q2 := Q2P.

4: Triangularize λÃ − B̃, i.e., compute orthogonal matrices Q̃1, Q̃2 such that A := Q̃T
2AQ̃1 =:

[
Ã ∗
0 Â

]
, B :=

Q̃T
2 BQ̃1 =:

[
B̃ ∗
0 B̂

]
with upper triangular Ã, upper quasi triangular B̃, and unchanged Â, B̂. Update Q1 =

Q1Q̃1, Q2 = Q2Q̃2.

5: Triangularize λÂ − B̂ with an appropriate permutation matrix P̂, i.e., A := P̂TAP̂ =:

[
Ã ∗
0 Â

]
, B :=

P̂TBP̂ =:

[
B̃ ∗
0 B̂

]
with upper triangular Â, upper quasi triangular B̂ and unchanged Ã, B̃. Update Q1 =

Q1P̂, Q2 = Q2P̂.

Finally, we describe the reordering of the eigenvalues.

ALGORITHM 14. Eigenvalue reordering for real skew-Hamiltonian/Hamiltonian matrix pencils in unfactored
form

Input: Regular 2n × 2n real skew-Hamiltonian/Hamiltonian matrix pencil λS − H of the form S =

[
S W
0 ST

]
,

H =

[
H D
0 −HT

]
, with upper triangular S an upper quasi triangular H.

Output: An orthogonal matrix Q and the transformed matrices JQTJ TSQ, JQTJ THQ which have still the
same (quasi) triangular form as S and H, respectively, but the eigenvalues in Λ− (S,H) are reordered such
that they occur in the leading principal subpencil of JQTJ T (λS −H)Q.

1: Set Q = I2n. Reorder the eigenvalues in the subpencil λS −H.

a) Determine orthogonal matrices Q1, Q2 such that S := QT
2 SQ1, H := QT

2HQ1, are still upper (quasi)
triangular but the m− eigenvalues with negative real part are reordered to the top of λS −H. Set Q1 :=
diag (Q1, Q2) and update Q := QQ1.

b) Determine orthogonal matrices Q1, Q2 such that S := QT
2 SQ1, H := QT

2HQ1, are still upper (quasi)
triangular but the m+ eigenvalues with positive real part are reordered to the bottom of λS − H. Set
Q1 := diag (Q1, Q2) and update Q := QQ1.
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2: Reorder the remaining n − m+ + 1 eigenvalues with negative real parts which are now in the bottom right
subpencil of λS − H. Determine an orthogonal matrix Q1 such that the eigenvalues of top left subpencil of
λS −H with positive real parts and those of the bottom right subpencil of λS −H with negative real parts are
interchanged. Update Q := QQ1.

4 Conclusion

We have presented algorithms which can be used to compute the eigenvalues and de�ating subspaces of
skew-Hamiltonian/Hamiltonian matrix pencils in a structure-preserving way which may lead to higher
accuracy, reliability and computational performance. Applications which are based on matrix pencils of
this structure have been introduced to show the importance of our considerations. In Part II of this paper
[8] we describe details of the implementation for the Subroutine Library in Control Theory (SLICOT).
We furthermore present results of some numerical experiments in order to show the superiority of our
method compared to standard approaches.
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