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Abstract

Skew-Hamiltonian/Hamiltonian matrix pencils λS − H appear in many applications, including lin-
ear quadratic optimal control problems, H∞-optimization, certain multi-body systems and many other
areas in applied mathematics, physics, and chemistry. In these applications it is necessary to compute
certain eigenvalues and/or corresponding de�ating subspaces of these matrix pencils. Recently developed
methods exploit and preserve the skew-Hamiltonian/Hamiltonian structure and hence increase reliabil-
ity, accuracy and performance of the computations. In this paper we describe the implementation of
the algorithms in the Subroutine Library in Control Theory (SLICOT) described in Part I of this work
[7] and address various details. Furthermore, we perform numerical tests using real-world examples to
demonstrate the superiority of the new algorithms compared to standard methods.

Keywords: De�ating subspaces, eigenvalue reordering, generalized eigenvalues, generalized Schur form,
skew-Hamiltonian/Hamiltonian matrix pencil, software, structure-preservation.



1 Introduction

In this paper we discuss algorithms for the solution of generalized eigenvalue problems with skew-
Hamiltonian/Hamiltonian structure. Usually, we are interested in a certain subset of the spectrum,
e.g., the eigenvalues with negative real part, or the purely imaginary eigenvalues; or corresponding de�at-
ing subspaces. In Part I of this paper we summarize structure-preserving algorithms for the computation
of the desired spectral information. All de�nitions, theoretical considerations and applications can be
found there. In this part we address certain implementation details and give a detailed documentation of
the subroutines. Finally, we perform a series of numerical tests to illustrate the e�ciency and robustness
of the algorithms and their implementation.

2 Implementation Details

In this section we focus on the description of our implementation of the algorithms presented in Part I
of this paper. We describe inputs and outputs of each individual main subroutine and certain implemen-
tation details.

2.1 General Remarks

Our subroutines are part of the Subroutine Library in Control Theory (SLICOT1) and hence they ful�ll
rigorous implementation standards [2, 1]. The parameters of each SLICOT routine can be classi�ed as
follows:

• mode parameters,

• input/output parameters,

• tolerances,

• workspace,

• error/warning indicator.

Mode parameters specify, e.g., what outputs we want to compute or what method we want to use
for computations. Input/output parameters are usually the dimension of the involved matrices and
the matrices themselves with their leading dimensions. In the sequel, LDx usually denotes the leading
dimension of the array �x". The workspace consists of memory for di�erent data types. Here, integer
workspace is denoted by IWORK with size LIWORK, similarly for logical (boolean) workspace BWORK of size
LBWORK, double precision workspace DWORK of size LDWORK, and double complex workspace ZWORK of size
LZWORK. The error indicator INFO tells the user if an illegal value was used as input (INFO takes negative
values) or if there occurred an error during program execution (INFO takes positive values). A warning
indicator IWARN informs the user about possibly unreliable or inaccurate results or additional information
about the results. We omit these parameters in the following interface description since they occur in
every routine in a similar way. We refer to the comments within every individual subroutine for more
details.

1http://www.slicot.org
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Hamiltonian skew-Hamiltonian

DE =


e11 d11 d12 d13 . . .
e21 e22 d22 d23 . . .
e31 e32 e33 d33 . . .
...

...
...

...
. . .

 DE =


? ? d12 d13 . . .
e21 ? ? d23 . . .
e31 e32 ? ? . . .
...

...
...

...
. . .



Figure 1: Storage layout for the (skew-)symmetric submatrices D and E

2.2 Storage Layout

Since Hamiltonian and skew-Hamiltonian matrices have certain block structures we use a packed storage
layout proposed in [4] to avoid saving redundant data. More speci�cally, if a real 2n × 2n Hamiltonian

matrix H =

[
A D
E −AT

]
is given, we save the submatrix A in a conventional n×n array A, the symmetric

submatrices D and E are stored in an n × (n + 1) array DE such that the upper triangular part of D
is stored in DE(1:n,2:n+1) and the lower triangular part of E is stored in DE(1:n,1:n). The skew-
symmetric parts of a skew-Hamiltonian matrix are similarly stored with the notable di�erence that the
parts containing the diagonal and the �rst superdiagonal of the array DE are not referenced. See also
Figure 1 for a visualization. Similarly, as every orthogonal or unitary symplectic 2n× 2n matrix has the

block structure U =

[
U1 U2

−U2 U1

]
, we only store the matrix U1 is an n× n array U1 and the matrix U2 is

an n× n array U2.

A similar storage format is also applied to complex skew-Hamiltonian or Hamiltonian matrices. In
contrast to the real case, for skew-Hamiltonian matrices, also the parts containing the diagonal and the
�rst superdiagonal of the array DE are referenced.

2.3 Panel Blocking for Larger Problems

The problems considered here are usually based on applying sequences of Givens rotations. When up-
dating the involved matrices we successively have to transform the corresponding rows and columns in
each step. However, for larger matrices this kind of transformations can become very ine�cient due to
FORTRAN's memory and cache management. FORTRAN uses a column-major memory layout, i.e.,
elements of a column are internally stored one after the other. On the other hand, the distance in the
internal memory between two successive elements in a row is exactly the leading dimension of that array.
Therefore, rows can only be put into the cache memory by caching also the remaining parts of the columns
that contain elements of the rows under consideration. For larger arrays, this easily leads to chunk sizes
that do not �t into cache memory anymore. Therefore, our idea is to store the information of a certain
number of Givens rotations and apply the row transformations only on panels of block size NB which �t
into the cache.

An example for such a panel update is depicted in Figure 2. It illustrates the blocking technique for
an update of a triangular matrix. Updates on columns are always directly applied after the generation of
the Givens rotation, whereas rows are split into certain subpanels of maximum block size NB. Note that
updates on the diagonal block are done separately as then the remaining parts of the rows have equal
size and can therefore be easily decomposed into subblocks. We note that each part of the code has to
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in each step

block size NB

perform transformations
on diagonal block

separately

remaining
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Figure 2: Panel blocking technique for an upper triangular matrix

be blocked in a di�erent way. This is due to di�erent matrix structures or dependencies of the updates
and generation of the next Givens rotations. Therefore sometimes parts of rows have to be updated in
each step. We have blocked versions for some of our codes and we will compare them with the unblocked
versions in Section 4.

3 Interface Description

This section gives a brief overview over the main individual routines and their interfaces. For brevity we
only describe the most important parameters and omit, e.g., leading dimensions and error or warning
indicators. If we say that an array contains a matrix we mean that this matrix is stored in the leading part
of this array. This is important because sometimes arrays can be larger than the matrices themselves.
Table 1 gives an overview about the algorithms presented in [7] and the corresponding FORTRAN routines
described in this paper.

3.1 The Complex Case

In this subsection we describe the interfaces of the subroutines needed for computing the eigenvalues
and stable de�ating subspaces of a complex skew-Hamiltonian/Hamiltonian matrix pencil. We begin
with the factored case. In Figure 3, the corresponding calling graph with all needed subroutines is
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Table 1: Overview of algorithms and FORTRAN routines
Algorithm # in [7] FORTRAN routine

1 MB03FZ

2 MB04ED

3 MB03IZ

4 MB03LZ

5 MB04FD

6 MB03JZ

7 MB03LF

8 MB04AD

9 MB04CD

10 MB03ID

11 MB03LD

12 MB04BD

13 MB04HD

14 MB03JD

depicted. For brevity we only show the needed driver routines and elementary subroutines that deal with
skew-Hamiltonian/Hamiltonian pencils of elementary size, i.e., up to size 4× 4. Further called SLICOT
subroutines are omitted. The structure of the calling graph for the unfactored case is similar and depicted
in Figure 4.

3.1.1 Subroutine MB03FZ (implements Algorithm 1)

Speci�cation:

SUBROUTINE MB03FZ( COMPQ, COMPU, ORTH, N, Z, LDZ, B, LDB, FG,

$ LDFG, NEIG, D, LDD, C, LDC, Q, LDQ, U, LDU,

$ ALPHAR, ALPHAI, BETA, IWORK, LIWORK, DWORK,

$ LDWORK, ZWORK, LZWORK, BWORK, INFO )

Purpose:

To compute the eigenvalues of a complex N-by-N skew-Hamiltonian/Hamiltonian pencil λS −H, with

S = JZHJ TZ and H =

[
B F
G −BH

]
, Z =

[
Z11 Z12

Z21 Z22

]
. (1)

The structured Schur form of the embedded real skew-Hamiltonian/skew-Hamiltonian pencil, λBS −
BT , with BS = JBHZ J TBZ ,

BZ =


Re(Z11) − Im(Z11) Re(Z12) − Im(Z12)
Im(Z11) Re(Z11) Im(Z12) Re(Z12)
Re(Z21) − Im(Z21) Re(Z22) − Im(Z22)
Im(Z21) Re(Z21) Im(Z22) Re(Z22)

 ,

BT =


− Im(B) −Re(B) − Im(F ) −Re(F )
Re(B) − Im(B) Re(F ) − Im(F )
− Im(G) −Re(G) − Im(BT ) Re(BT )
Re(G) − Im(G) −Re(BT ) − Im(BT )

 , T = iH,
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MB03FZ

MB03IZMB04ED

MB03GZMB03CZ

driver
routines

elementary
subroutines

Figure 3: Calling graph for the the computation of the eigenvalues and stable de�ating subspace of a
complex skew-Hamiltonian/Hamiltonian matrix pencil in factored form

MB03LZ

MB03JZMB04FD

MB03HZMB03DZ

driver
routines

elementary
subroutines

Figure 4: Calling graph for the the computation of the eigenvalues and stable de�ating subspace of a
complex skew-Hamiltonian/Hamiltonian matrix pencil in unfactored form
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is determined and used to compute the eigenvalues. Optionally, an orthonormal basis of the right
de�ating subspace, Def−(S,H), of the pencil λS − H in (1), corresponding to the eigenvalues with
strictly negative real part, is computed. Namely, after transforming λBS − BH, in the factored form,
by unitary matrices, we have BS,out = JBHZ,outJ TBZ,out,

BZ,out =
[
BA BD
0 BC

]
and BH,out =

[
BB BF
0 −BHB

]
, (2)

and the eigenvalues with strictly negative real part of the complex pencil λBS,out −BH,out are moved
to the top. Optionally, an orthonormal basis of the companion subspace, range(PU ) [5], which cor-
responds to the eigenvalues with negative real part, is computed. The embedding doubles the multi-
plicities of the eigenvalues of the pencil λS −H.

Arguments:

Mode Parameters:

• COMPQ (CHARACTER*1),

COMPU (CHARACTER*1): Specify whether to compute the right de�ating subspace and the
companion subspace corresponding to the eigenvalues of λS − H with strictly negative real
part, respectively.
= 'N': do not compute the corresponding subspace;
= 'C': compute the corresponding subspace.

• ORTH (CHARACTER*1): Speci�es the technique for computing the orthonormal bases of the
de�ating subspace and companion subspace (if needed).
= 'P': QR factorization with column pivoting;
= 'S': singular value decomposition.

Input/Output Parameters:

• N (input INTEGER): Order of the pencil λS −H. N ≥ 0, even.

• Z (input/output COMPLEX*16 array, dimension (LDZ, N)): On entry, this array must
contain the factor Z in the factorization S = JZHJ TZ of the skew-Hamiltonian matrix S.
Optionally, on exit, this array contains the matrix BA in (2).

• B (input/output COMPLEX*16 array, dimension (LDB, N)): On entry, this array must
contain the matrix B. Optionally, on exit, this array contains the matrix BB in (2).

• FG (input/output COMPLEX*16 array, dimension (LDFG, N)):On entry, this array must
contain the upper/lower triangular parts of the Hermitian matrices F and G, respectively.
Optionally, on exit, this array contains the upper triangular matrix BF in (2).

• NEIG (output INTEGER): Optionally, the number of eigenvalues in λS − H with strictly
negative real part.

• D (output COMPLEX*16 array, dimension (LDD, N)),

C (output COMPLEX*16 array, dimension (LDC, N)): Optionally, these arrays contain
the matrices BD and BC in (2), respectively.

• Q (output COMPLEX*16 array, dimension (LDQ, 2*N)),

U (output COMPLEX*16 array, dimension (LDU, 2*N)): Optionally, these arrays contain
orthonormal bases of the right de�ating subspace and the companion subspace corresponding
to the eigenvalues of the pencil λS −H with strictly negative real part.
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• ALPHAR (output DOUBLE PRECISION array, dimension (N)),

ALPHAI (output DOUBLE PRECISION array, dimension (N)),

BETA (output DOUBLE PRECISION array, dimension (N)): The scalars that de�ne the
eigenvalues of the pencil λS−H. Together, the quantities α = (ALPHAR(j),ALPHAI(j)) and
β = BETA(j) represent the j-th eigenvalue of the pencil λS −H, in the form λ = α/β. Since
λ may over�ow, the ratios should not, in general, be computed.

3.1.2 Subroutine MB04ED (implements Algorithm 2)

Speci�cation:

SUBROUTINE MB04ED( JOB, COMPQ, COMPU, N, Z, LDZ, B, LDB, FG, LDFG,

$ Q, LDQ, U1, LDU1, U2, LDU2, ALPHAR, ALPHAI,

$ BETA, IWORK, LIWORK, DWORK, LDWORK, INFO )

Purpose:

To compute the eigenvalues of a real N-by-N skew-Hamiltonian/skew-Hamiltonian pencil λS − T with

S = JZTJ TZ and T =

[
B F
G BT

]
.

Optionally, the pencil λS − T will be transformed to the structured Schur form: an orthogonal

transformation matrix Q and an orthogonal symplectic transformation matrix U =

[
U1 U2

−U2 U1

]
are

computed, such that

UTZQ =

[
Z11 Z12

0 Z22

]
= Zout, and JQTJ TT Q =

[
Bout Fout
0 BT

out

]
, (3)

where Z11 and ZT22 are upper triangular and Bout is upper quasi-triangular.

Arguments:

Mode Parameters:

• JOB (CHARACTER*1): Speci�es whether only the eigenvalues should be computed, or whether
the matrices Z and T should be also transformed into the forms in (3).
= 'E': compute the eigenvalues only;
= 'T': put Z and T into the forms in (3), and return the eigenvalues.

• COMPQ (CHARACTER*1),

COMPU (CHARACTER*1): Specify whether or not the orthogonal and orthogonal symplectic
transformations should be accumulated in the arrays Q, U1, and U2, respectively.
= 'N': the corresponding transformation matrix is not computed;
= 'I': the corresponding transformation matrix is computed;
= 'U': the corresponding transformation matrix is computed but multiplied by a given input
matrix as described below.

Input/Output Parameters:

• N (input INTEGER): Order of the pencil λS − T . N ≥ 0, even.
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• Z (input/output DOUBLE PRECISION array, dimension (LDZ, N)),

B (input/output DOUBLE PRECISION array, dimension (LDB, N/2)): On entry, these
arrays must contain the matrices Z and B, respectively. Optionally, on exit, these arrays
contain the matrices Zout and Bout, respectively.

• FG (input/output DOUBLE PRECISION array, dimension (LDFG, N/2+1)): On entry,
this array must contain the strictly lower triangular part of the skew-symmetric matrix G,
and the strictly upper triangular part of the skew-symmetric matrix F . Optionally, on exit,
this array contains the strictly upper triangular part of the skew-symmetric matrix Fout.

• Q (input/output DOUBLE PRECISION array, dimension (LDQ, N)): Optionally, on en-
try, this array must contain a given matrix Q0, and on exit, this array contains the product
of the input matrix Q0 and the transformation matrix Q used to transform the matrices Z
and T . Optionally, on exit, this array contains only the orthogonal transformation matrix
Q.

• U1 (input/output COMPLEX*16 array, dimension (LDU1, N/2)),

U2 (input/output COMPLEX*16 array, dimension (LDU2, N/2)): Optionally, on entry,
these arrays must contain the upper left and right blocks of a given matrix U0, and on exit,
these arrays contain the updated upper left and right blocks U1 and U2 of the product of the
input matrix U0 and the transformation matrix U used to transform the matrices Z and T .
Optionally, on exit, these arrays contain only the upper left and right blocks U1 and U2 of
the orthogonal symplectic transformation matrix U , respectively.

• ALPHAR (output DOUBLE PRECISION array, dimension (N/2)),

ALPHAI (output DOUBLE PRECISION array, dimension (N/2)),

BETA (output DOUBLE PRECISION array, dimension (N/2)): The scalars that de�ne
the eigenvalues of the pencil λS −T . Together, the quantities α = (ALPHAR(j),ALPHAI(j))

and β = BETA(j) represent the j-th eigenvalue of the pencil λS − T , in the form λ = α/β.
Since λ may over�ow, the ratios should not, in general, be computed. Due to the skew-
Hamiltonian/skew-Hamiltonian structure of the pencil, every eigenvalue occurs twice and
thus it has only to be saved once in ALPHAR, ALPHAI and BETA.

3.1.3 Subroutine MB03IZ (implements Algorithm 3)

Speci�cation:

SUBROUTINE MB03IZ( COMPQ, COMPU, N, A, LDA, C, LDC, D, LDD, B,

$ LDB, F, LDF, Q, LDQ, U1, LDU1, U2, LDU2, NEIG,

$ TOL, INFO )

Purpose:

To move the eigenvalues with strictly negative real parts of an N-by-N complex skew-Hamiltonian/Ha-
miltonian pencil λS −H in structured Schur form, with

S = JZHJ TZ

to the leading principal subpencil, while keeping the triangular form. On entry, we have

Z =

[
A D
0 C

]
, H =

[
B F
0 −BH

]

8



where A and B are upper triangular and C is lower triangular. Z and H are transformed by a unitary
symplectic matrix U and a unitary matrix Q such that

Zout = UHZQ =

[
Aout Dout

0 Cout

]
, and Hout = JQHJ THQ =

[
Bout Fout
0 −BH

out

]
, (4)

where Aout, Bout and Cout remain in triangular form. Optionally, the unitary matrix Q and the

unitary symplectic matrix U =

[
U1 U2

−U2 U1

]
that ful�ll (4) are computed.

Arguments:

Mode Parameters:

• COMPQ (CHARACTER*1),

COMPU (CHARACTER*1): Specify whether or not the unitary and unitary symplectic trans-
formations should be accumulated in the arrays Q, U1, and U2, respectively.
= 'N': the corresponding transformation matrix is not computed;
= 'I': the corresponding transformation matrix is computed;
= 'U': the corresponding transformation matrix is computed but multiplied by a given input
matrix as described below.

Input/Output Parameters:

• N (input INTEGER): The order of the pencil λS −H. N ≥ 0, even.

• A (input/output COMPLEX*16 array, dimension (LDA, N/2)),

C (input/output COMPLEX*16 array, dimension (LDC, N/2)),

D (input/output COMPLEX*16 array, dimension (LDD, N/2)),

B (input/output COMPLEX*16 array, dimension (LDB, N/2)): On entry, these arrays
must contain the matrices A, C, D, and B, respectively. On exit, these arrays contain the
transformed matrices Aout, Cout, Dout, and Bout, respectively.

• F (input/output COMPLEX*16 array, dimension (LDF, N/2)): On entry, this array must
contain the upper triangular part of the matrix F . On exit, this array contains the trans-
formed matrix Fout.

• Q (input/output COMPLEX*16 array, dimension (LDQ, N)): Optionally, on entry, this
array must contain a given matrix Q0, and on exit, this array contains the product of the
input matrix Q0 and the transformation matrix Q used to transform the matrices Z and H.
Optionally, on exit, this array contains only the unitary transformation matrix Q.

• U1 (input/output COMPLEX*16 array, dimension (LDU1, N/2)),

U2 (input/output COMPLEX*16 array, dimension (LDU2, N/2)): Optionally, on entry,
these arrays must contain the upper left and right blocks of a given matrix U0, and on exit,
these arrays contain the updated upper left and right blocks U1 and U2 of the product of the
input matrix U0 and the transformation matrix U used to transform the matrices Z and H.
Optionally, on exit, these arrays contain only the upper left and right blocks U1 and U2 of
the unitary symplectic transformation matrix U , respectively.

• NEIG (output INTEGER): The number of eigenvalues in λS − H with strictly negative real
part.

Tolerances:
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• TOL (DOUBLE PRECISION): The tolerance used to decide the sign of the eigenvalues. If the
user sets TOL > 0, then the given value of TOL is used. If the user sets TOL ≤ 0, then an
implicitly computed, default tolerance, de�ned by min{N, 10}ε, is used instead, where ε is
the machine precision. A larger value might be needed for pencils with multiple eigenvalues.

3.1.4 Subroutine MB03LZ (implements Algorithm 4)

Speci�cation:

SUBROUTINE MB03LZ( COMPQ, ORTH, N, A, LDA, DE, LDDE, B, LDB, FG,

$ LDFG, NEIG, Q, LDQ, ALPHAR, ALPHAI, BETA,

$ IWORK, DWORK, LDWORK, ZWORK, LZWORK, BWORK,

$ INFO )

Purpose:

To compute the eigenvalues of a complex N-by-N skew-Hamiltonian/Hamiltonian pencil λS −H, with

S =

[
A D
E AH

]
and H =

[
B F
G −BH

]
.

The structured Schur form of the embedded real skew-Hamiltonian/skew-Hamiltonian pencil λBS−BT ,
de�ned as

BS =


Re(A) − Im(A) Re(D) − Im(D)
Im(A) Re(A) Im(D) Re(D)
Re(E) − Im(E) Re(AT ) Im(AT )
Im(E) Re(E) − Im(AT ) Re(AT )

 ,

BT =


− Im(B) −Re(B) − Im(F ) −Re(F )
Re(B) − Im(B) Re(F ) − Im(F )
− Im(G) −Re(G) − Im(BT ) Re(BT )
Re(G) − Im(G) −Re(BT ) − Im(BT )

 , T = iH,

is determined and used to compute the eigenvalues. Optionally, an orthonormal basis of the right
de�ating subspace of the pencil λS − H, corresponding to the eigenvalues with strictly negative real
part, is computed. Namely, after transforming λBS − BH by unitary matrices, we have

BS,out =
[
BA BD
0 BHA

]
and BH,out =

[
BB BF
0 −BHB

]
, (5)

and the eigenvalues with strictly negative real part of the complex pencil λBS,out −BH,out are moved
to the top. The embedding doubles the multiplicities of the eigenvalues of the pencil λS −H.

Arguments:

Mode Parameters:

• COMPQ (CHARACTER*1): Speci�es whether to compute the de�ating subspace corresponding
to the eigenvalues of λS −H with strictly negative real part.
= 'N': do not compute the corresponding subspace;
= 'C': compute the corresponding subspace.

• ORTH (CHARACTER*1): Speci�es the technique for computing an orthonormal basis of the
de�ating subspace (if needed).
= 'P': QR factorization with column pivoting;
= 'S': singular value decomposition.

10



Input/Output Parameters:

• N (input INTEGER): The order of the pencil λS −H. N ≥ 0, even.

• A (input/output COMPLEX*16 array, dimension (LDA, N)),

B (input/output COMPLEX*16 array, dimension (LDB, N)):On entry, these arrays must
contain the matrices A and B. Optionally, on exit, these arrays contain the upper triangular
matrices BA and BB in (5), respectively.

• DE (input/output COMPLEX*16 array, dimension (LDDE, N)),

FG (input/output COMPLEX*16 array, dimension (LDFG, N)): On entry, these arrays
must contain the (strictly) upper/lower triangular parts of the skew-Hermitian matrices D
and E, and the Hermitian matrices F and G, respectively. Optionally, on exit, these arrays
contain the upper triangular parts of the matrices BD and BF in (5), respectively.

• NEIG (output INTEGER): Optionally, the number of eigenvalues in λS − H with strictly
negative real part.

• Q (output COMPLEX*16 array, dimension (LDQ, 2*N)): Optionally, on exit, this array
contains an orthonormal basis of the right de�ating subspace corresponding to the eigenvalues
of the pencil λS −H with strictly negative real part.

• ALPHAR (output DOUBLE PRECISION array, dimension (N)),

ALPHAI (output DOUBLE PRECISION array, dimension (N)),

BETA (output DOUBLE PRECISION array, dimension (N)): The scalars that de�ne the
eigenvalues of the pencil λS−H. Together, the quantities α = (ALPHAR(j),ALPHAI(j)) and
β = BETA(j) represent the j-th eigenvalue of the pencil λS −H, in the form λ = α/β. Since
λ may over�ow, the ratios should not, in general, be computed.

3.1.5 Subroutine MB04FD (implements Algorithm 5)

Speci�cation:

SUBROUTINE MB04FD( JOB, COMPQ, N, A, LDA, DE, LDDE, B, LDB,

$ FG, LDFG, Q, LDQ, ALPHAR, ALPHAI, BETA, DWORK,

$ LDWORK, INFO )

Purpose:

To compute the eigenvalues of a real N-by-N skew-Hamiltonian/skew-Hamiltonian pencil λS − T with

S =

[
A D
E AT

]
and T =

[
B F
G BT

]
.

Optionally, the pencil λS − T will be transformed to the structured Schur form: an orthogonal
transformation matrix Q is computed such that

JQTJ TSQ =

[
Aout Dout

0 AT
out

]
and JQTJ TT Q =

[
Bout Fout
0 BT

out

]
, (6)

Aout is upper triangular, and Bout is upper quasi-triangular.

Arguments:

Mode Parameters:
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• JOB (CHARACTER*1): Speci�es whether only the eigenvalues should be computed, or whether
the matrices S and T should be also transformed into the forms in (6).
= 'E': compute the eigenvalues only;
= 'T': put S and T into the forms in (6), and return the eigenvalues.

• COMPQ (CHARACTER*1): Speci�es whether or not the orthogonal transformations should be
accumulated in the array Q.
= 'N': the transformation matrix is not computed;
= 'I': the transformation matrix is computed;
= 'U': the transformation matrix is computed but multiplied by a given input matrix as
described below.

Input/Output Parameters:

• N (input INTEGER): The order of the pencil λS − T . N ≥ 0, even.

• A (input/output DOUBLE PRECISION array, dimension (LDA, N/2)),

B (input/output DOUBLE PRECISION array, dimension (LDB, N/2)): On entry, these
arrays must contain the matrices A and B. Optionally, on exit, these arrays contain the
matrices Aout and Bout, respectively.

• DE (input/output DOUBLE PRECISION array, dimension (LDDE, N/2+1)),

FG (input/output DOUBLE PRECISION array, dimension (LDFG, N/2+1)): On entry,
these arrays must contain the strictly upper/lower triangular parts of the skew-symmetric
matrices D and E, and F and G, respectively. Optionally, on exit, these arrays contain the
strictly upper triangular part of the matrices Dout and Fout.

• Q (input/output DOUBLE PRECISION array, dimension (LDQ, N)): Optionally, on en-
try, this array must contain a given matrix Q0, and on exit, this array contains the product
of the input matrix Q0 and the transformation matrix Q used to transform the matrices S
and H. Optionally, on exit, this array contains only the orthogonal transformation matrix
Q.

• ALPHAR (output DOUBLE PRECISION array, dimension (N/2)),

ALPHAI (output DOUBLE PRECISION array, dimension (N/2)),

BETA (output DOUBLE PRECISION array, dimension (N/2)): The scalars that de�ne
the eigenvalues of the pencil λS −T . Together, the quantities α = (ALPHAR(j),ALPHAI(j))

and β = BETA(j) represent the j-th eigenvalue of the pencil λS − T , in the form λ = α/β.
Since λ may over�ow, the ratios should not, in general, be computed. Due to the skew-
Hamiltonian/skew-Hamiltonian structure of the pencil, every eigenvalue occurs twice and
thus it has only to be saved once in ALPHAR, ALPHAI and BETA.

3.1.6 Subroutine MB03JZ (implements Algorithm 6)

Speci�cation:

SUBROUTINE MB03JZ( COMPQ, N, A, LDA, D, LDD, B, LDB, F, LDF, Q,

$ LDQ, NEIG, TOL, INFO )

Purpose:

To move the eigenvalues with strictly negative real parts of an N-by-N complex skew-Hamiltonian/Ha-
miltonian pencil λS − H in structured Schur form to the leading principal subpencil, while keeping
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the triangular form. On entry we have

S =

[
A D
0 AH

]
and H =

[
B F
0 −BH

]
.

with A and B upper triangular. S and H are transformed by a unitary matrix Q such that

Sout = JQHJ TSQ =

[
Aout Dout

0 AH
out

]
and Hout = JQHJ THQ =

[
Bout Fout
0 −BH

out

]
, (7)

where Aout and Bout are upper triangular. Optionally, the matrix Q that ful�lls (7) is computed.

Arguments:

Mode Parameters:

• COMPQ (CHARACTER*1): Speci�es whether or not the unitary transformations should be ac-
cumulated in the array Q.
= 'N': the transformation matrix is not computed;
= 'I': the transformation matrix is computed;
= 'U': the transformation matrix is computed but multiplied by a given input matrix as
described below.

Input/Output Parameters:

• N (input INTEGER): The order of the pencil λS −H. N ≥ 0, even.

• A (input/output COMPLEX*16 array, dimension (LDA, N/2)),

B (input/output COMPLEX*16 array, dimension (LDB, N/2)): On entry, these arrays
must contain the matrices A and B. On exit, these arrays contain the transformed matrices
Aout and Bout, respectively.

• D (input/output COMPLEX*16 array, dimension (LDD, N/2)),

F (input/output COMPLEX*16 array, dimension (LDF, N/2)): On entry, these arrays
must contain the upper triangular parts of the matrices D and F . On exit, these arrays
contain the upper triangular parts of the transformed matrices Dout and Fout, respectively.

• Q (input/output COMPLEX*16 array, dimension (LDQ, N)): Optionally, on entry, this
array must contain a given matrix Q0, and on exit, this array contains the product of the
input matrix Q0 and the transformation matrix Q used to transform the matrices S and H.
Optionally, on exit, this array contains only the unitary transformation matrix Q.

• NEIG (output INTEGER): The number of eigenvalues in λS − H with strictly negative real
part.

Tolerances:

• TOL (DOUBLE PRECISION): The tolerance used to decide the sign of the eigenvalues. If the
user sets TOL > 0, then the given value of TOL is used. If the user sets TOL ≤ 0, then an
implicitly computed, default tolerance, de�ned by min{N, 10}ε, is used instead, where ε is
the machine precision. A larger value might be needed for pencils with multiple eigenvalues.

3.2 The Real Case

In this subsection we describe the interfaces of the subroutines needed for computing the eigenvalues and
stable de�ating subspaces of a real skew-Hamiltonian/Hamiltonian matrix pencil. The calling graphs for
the factored and the unfactored case are depicted in Figures 5 and 6, respectively.
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MB03LF

MB04CDMB04AD MB03ID

MB03CDMB03ED MB03GD

driver
routines

elementary
subroutines

Figure 5: Calling graph for the the computation of the eigenvalues and stable de�ating subspace of a real
skew-Hamiltonian/Hamiltonian matrix pencil in factored form

MB03LD

MB04HDMB04BD MB03JD

MB03DDMB03FD MB03HD

driver
routines

elementary
subroutines

Figure 6: Calling graph for the the computation of the eigenvalues and stable de�ating subspaces of a
real skew-Hamiltonian/Hamiltonian matrix pencil in unfactored form
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3.2.1 Subroutine MB03LF (implements Algorithm 7)

Speci�cation:

SUBROUTINE MB03LF( COMPQ, COMPU, ORTH, N, Z, LDZ, B, LDB, FG,

$ LDFG, NEIG, Q, LDQ, U, LDU, ALPHAR, ALPHAI,

$ BETA, IWORK, LIWORK, DWORK, LDWORK, BWORK,

$ IWARN, INFO )

Purpose:

To compute the relevant eigenvalues of a real N-by-N skew-Hamiltonian/Hamiltonian pencil λS − H,
with

S = T Z = JZTJ TZ and H =

[
B F
G −BT

]
.

Optionally, an orthonormal basis of the right de�ating subspace of λS − H corresponding to the
eigenvalues with strictly negative real part is computed. Optionally, an orthonormal basis of the
companion subspace, range(PU ) [5], which corresponds to the eigenvalues with strictly negative real
part, is computed.

Arguments:

Mode Parameters:

• COMPQ (CHARACTER*1),

COMPU (CHARACTER*1): Specify whether to compute the right de�ating subspace and com-
panion subspace corresponding to the eigenvalues of λS −H with strictly negative real part,
respectively.
= 'N': do not compute the corresponding subspace;
= 'C': compute the corresponding subspace.

• ORTH (CHARACTER*1): Speci�es the technique for computing the orthogonal basis of the
de�ating subspace, and/or of the companion subspace (if needed).
= 'P': QR factorization with column pivoting;
= 'S': singular value decomposition.

Input/Output Parameters:

• N (input INTEGER): The order of the pencil λS −H. N ≥ 0, even.

• Z (input/output DOUBLE PRECISION array, dimension (LDZ, N)): On entry, this array
must contain the non-trivial factor Z in the factorization S = JZTJ TZ of the skew-
Hamiltonian matrix S. On exit, this array is overwritten by some intermediate results,
depending on the values of COMPQ and COMPU.

• B (input DOUBLE PRECISION array, dimension (LDB, N/2)): On entry, this array must
contain the matrix B.

• FG (input DOUBLE PRECISION array, dimension (LDFG, N/2+1)): On entry, this array
must contain the upper/lower triangular parts of the Hermitian matrices F and G, respec-
tively.

• NEIG (output INTEGER): Optionally, the number of eigenvalues in λS − H with strictly
negative real part.
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• Q (output DOUBLE PRECISION array, dimension (LDQ, 2*N)),

U (output DOUBLE PRECISION array, dimension (LDU, 2*N)):Optionally, on exit, these
arrays contain orthogonal bases of the right de�ating subspace and the companion subspace
corresponding to the eigenvalues of λS −H with strictly negative real part.

• ALPHAR (output DOUBLE PRECISION array, dimension (N/2)),

ALPHAI (output DOUBLE PRECISION array, dimension (N/2)),

BETA (output DOUBLE PRECISION array, dimension (N/2)): The scalars that de�ne
the eigenvalues of the pencil λS−H. If INFO = 0, the quantities α = (ALPHAR(j),ALPHAI(j)),
and β = BETA(j) represent together the j-th eigenvalue of the pencil λS − H, in the form
λ = α/β. Since λ may over�ow, the ratios should not, in general, be computed. Due to the
skew-Hamiltonian/Hamiltonian structure of the pencil, only half of the spectrum is saved in
ALPHAR, ALPHAI and BETA. Speci�cally, the eigenvalues with positive real parts or with non-
negative imaginary parts, when real parts are zero, are returned. The remaining eigenvalues
have opposite signs. If IWARN = 1, one or more BETA(j) is not representable. Therefore, the
j-th eigenvalue is represented by the quantities α = (ALPHAR(j),ALPHAI(j)), β = BETA(j),
and γ = IWORK(j) in the form λ = (α/β) · bγ , where b is the machine base (often 2.0),
returned in DWORK(2).

3.2.2 Subroutine MB04AD (implements Algorithm 8)

Speci�cation:

SUBROUTINE MB04AD( JOB, COMPQ1, COMPQ2, COMPU1, COMPU2, N, Z, LDZ,

$ H, LDH, Q1, LDQ1, Q2, LDQ2, U11, LDU11, U12,

$ LDU12, U21, LDU21, U22, LDU22, T, LDT, ALPHAR,

$ ALPHAI, BETA, IWORK, LIWORK, DWORK, LDWORK,

$ INFO )

Purpose:

To compute the eigenvalues of a real N-by-N skew-Hamiltonian/Hamiltonian pencil λS −H with S =
T Z = JZTJ TZ via generalized symplectic URV decomposition. That is, orthogonal matrices Q1

and Q2 and orthogonal symplectic matrices U1 and U2 are computed such that

QT1 T U1 = QT1 JZTJ TU1 =

[
T11 T12
0 T22

]
= Tout,

UT2 ZQ2 =

[
Z11 Z12

0 Z22

]
= Zout,

QT1HQ2 =

[
H11 H12

0 H22

]
= Hout,

(8)

where T11, T
T
22, Z11, Z

T
22, H11 are upper triangular and HT

22 is upper quasi-triangular. Optionally,
the orthogonal transformation matrices Q1 and Q2, and the orthogonal symplectic transformation

matrices U1 =

[
U11 U12

−U12 U11

]
and U2 =

[
U21 U22

−U22 U21

]
will be computed.

Arguments:

Mode Parameters:

• JOB (CHARACTER*1): Speci�es whether only the eigenvalues should be computed, or whether
the matrices Z, T , and H should be also transformed into the forms in (8).
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= 'E': compute the eigenvalues only;
= 'T': put Z, T , and J into the forms in (8), and return the eigenvalues.

• COMPQ1 (CHARACTER*1),

COMPQ2 (CHARACTER*1),

COMPU1 (CHARACTER*1),

COMPU2 (CHARACTER*1): Specify whether or not the orthogonal and orthogonal symplectic
transformations should be accumulated in the arrays Q1, Q2, U11, U12, U21, and U22, respec-
tively.
= 'N': the corresponding transformation matrix is not computed;
= 'I': the corresponding transformation matrix is computed;
= 'U': the corresponding transformation matrix is computed but multiplied by a given input
matrix as described below.

Input/Output Parameters:

• N (input INTEGER): The order of the pencil λS −H. N ≥ 0, even.

• Z (input/output DOUBLE PRECISION array, dimension (LDZ, N)),

H (input/output DOUBLE PRECISION array, dimension (LDH, N)): On entry, these ar-
rays must contain the matrices Z and H. Optionally, on exit, this arrays contain the matrices
Zout and Hout.

• Q1 (input/output DOUBLE PRECISION array, dimension (LDQ1, N)),

Q2 (input/output DOUBLE PRECISION array, dimension (LDQ2, N)):Optionally, on en-
try, these arrays must contain given matrices Q01 and Q02, and on exit, these arrays contain
the product of the input matrices Q01 and Q02 and the transformation matrices Q1 and Q2,
respectively, used to transform the matrices Z, T , and H. Optionally, on exit, these arrays
contain only the orthogonal transformation matrices Q1 and Q2.

• U11 (input/output DOUBLE PRECISION array, dimension (LDU11, N/2)),

U12 (input/output DOUBLE PRECISION array, dimension (LDU12, N/2)),

U21 (input/output DOUBLE PRECISION array, dimension (LDU21, N/2)),

U22 (input/output DOUBLE PRECISION array, dimension (LDU22, N/2)): Optionally,
on entry, these arrays must contain the upper left and right blocks of given matrices U01 and
U02, and on exit, these arrays contain the updated upper left and right blocks U11, U12, U21,
and U22 of the product of the input matrices U01 and U02 and the transformation matrices
U1 and U2, respectively, used to transform the matrices Z and H. Optionally, on exit, these
arrays contain only the upper left and right blocks U11, U12, U21, and U22 of the orthogonal
symplectic transformation matrices U1 and U2, respectively.

• T (output DOUBLE PRECISION array, dimension (LDT, N)):Optionally, on exit, this ar-
ray contains the matrix Tout.

• ALPHAR (output DOUBLE PRECISION array, dimension (N/2)),

ALPHAI (output DOUBLE PRECISION array, dimension (N/2)),

BETA (output DOUBLE PRECISION array, dimension (N/2)): The scalars that de�ne
the eigenvalues of the pencil λS−H. If INFO = 0, the quantities α = (ALPHAR(j),ALPHAI(j)),
and β = BETA(j) represent together the j-th eigenvalue of the pencil λS − H, in the form
λ = α/β. Since λ may over�ow, the ratios should not, in general, be computed. Due to the
skew-Hamiltonian/Hamiltonian structure of the pencil, only half of the spectrum is saved in
ALPHAR, ALPHAI and BETA. Speci�cally, the eigenvalues with positive real parts or with non-
negative imaginary parts, when real parts are zero, are returned. The remaining eigenvalues
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have opposite signs. If INFO = 3, one or more BETA(j) is not representable. Therefore, the
j-th eigenvalue is represented by the quantities α = (ALPHAR(j),ALPHAI(j)), β = BETA(j),
and γ = IWORK(j) in the form λ = (α/β) ·bγ , where b is the machine base (often 2.0). This
is not an error.

3.2.3 Subroutine MB04CD (implements Algorithm 9)

Speci�cation:

SUBROUTINE MB04CD( COMPQ1, COMPQ2, COMPQ3, N, A, LDA, B, LDB, D,

$ LDD, Q1, LDQ1, Q2, LDQ2, Q3, LDQ3, IWORK,

$ LIWORK, DWORK, LDWORK, BWORK, INFO )

Purpose:

To compute the transformed matrices A, B and D, using orthogonal matrices Q1, Q2 and Q3 for a
real N-by-N regular pencil

λAB −D = λ

[
A11 0
0 A22

] [
B11 0
0 B22

]
−
[

0 D12

D21 0

]
, (9)

where A11, A22, B11, B22, and D12 are upper triangular, D21 is upper quasi-triangular and the
generalized matrix product A−111 D12B

−1
22 A

−1
22 D21B

−1
11 is in periodic Schur form, such that QT3AQ2,

QT2 BQ1 are upper triangular, QT3DQ1 is upper quasi-triangular, and the pencil λQT3ABQ1−QT3DQ1

is in generalized Schur form.

Arguments:

Mode Parameters:

• COMPQ1 (CHARACTER*1),

COMPQ2 (CHARACTER*1),

COMPQ3 (CHARACTER*1): Specify whether or not the orthogonal transformations should be
accumulated in the arrays Q1, Q2, Q3.
= 'N': the corresponding transformation matrix is not computed;
= 'I': the corresponding transformation matrix is computed;
= 'U': the corresponding transformation matrix is computed but multiplied by a given input
matrix as described below.

Input/Output Parameters:

• N (input INTEGER): Order of the pencil λAB −D. N ≥ 0, even.

• A (input/output DOUBLE PRECISION array, dimension (LDA, N)),

B (input/output DOUBLE PRECISION array, dimension (LDB, N)),

D (input/output DOUBLE PRECISION array, dimension (LDD, N)): On entry, these ar-
rays must contain the matrices A, B, and D in (9). The zero (o�-)diagonal blocks need not be
set to zero. On exit, these arrays contain the transformed upper (quasi-)triangular matrices.

• Q1 (input/output DOUBLE PRECISION array, dimension (LDQ1, N)),

Q2 (input/output DOUBLE PRECISION array, dimension (LDQ2, N)),

Q3 (input/output DOUBLE PRECISION array, dimension (LDQ3, N)):Optionally, on en-
try, these arrays must contain given matrices Q01, Q02, and Q03 and on exit, these arrays
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contain the product of the input matrices Q01, Q02, and Q03 and the transformation matri-
ces Q1, Q2, and Q3, respectively, used to transform the matrices A, B, and D. Optionally,
on exit, these arrays contain only the orthogonal transformation matrices Q1, Q2, and Q3,
respectively.

3.2.4 Subroutine MB03ID (implements Algorithm 10)

Speci�cation:

SUBROUTINE MB03ID( COMPQ, COMPU, N, A, LDA, C, LDC, D, LDD, B,

$ LDB, F, LDF, Q, LDQ, U1, LDU1, U2, LDU2, NEIG,

$ IWORK, LIWORK, DWORK, LDWORK, INFO )

Purpose:

To move the eigenvalues with strictly negative real parts of an N-by-N real skew-Hamiltonian/Hamil-
tonian pencil λS −H in structured Schur form, with S = JZTJ TZ,

Z =

[
A D
0 C

]
, and H =

[
B F
0 −BT

]
to the leading principal subpencil, while keeping the triangular form. Above, A is upper triangular,
B is upper quasi-triangular, and C is lower triangular. The matrices Z and H are transformed by an
orthogonal symplectic matrix U and an orthogonal matrix Q such that

Zout = UTZQ =

[
Aout Dout

0 Cout

]
and Hout = JQTJ THQ =

[
Bout Fout
0 −BT

out

]
, (10)

where Aout, Bout, and Cout remain in triangular form. Optionally, the orthogonal matrix Q and the

orthogonal symplectic matrix U =

[
U1 U2

−U2 U1

]
that ful�ll (10) are computed.

Arguments:

Mode Parameters:

• COMPQ (CHARACTER*1),

COMPU (CHARACTER*1): Specify whether or not the orthogonal and orthogonal symplectic
transformations should be accumulated in the arrays Q, U1, and U2.
= 'N': the corresponding transformation matrix is not computed;
= 'I': the corresponding transformation matrix is computed;
= 'U': the corresponding transformation matrix is computed but multiplied by a given input
matrix as described below.

Input/Output Parameters:

• N (input INTEGER): The order of the pencil λS −H. N ≥ 0, even.

• A (input/output DOUBLE PRECISION array, dimension (LDA, N/2)),

C (input/output DOUBLE PRECISION array, dimension (LDC, N/2)),

D (input/output DOUBLE PRECISION array, dimension (LDD, N/2)),

B (input/output DOUBLE PRECISION array, dimension (LDB, N/2)): On entry, these
arrays must contain the matrices A, C, D, and B, respectively. On exit, these arrays contain
the transformed matrices Aout, Cout, Dout, and Bout, respectivly.
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• F (input/output DOUBLE PRECISION array, dimension (LDF, N/2)): On entry, this ar-
ray must contain the upper triangular part of the matrix F . On exit, this array contains the
transformed upper triangular part of the matrix Fout.

• Q (input/output DOUBLE PRECISION array, dimension (LDQ, N)): Optionally, on en-
try, this array must contain a given matrix Q0, and on exit, this array contains the product
of the input matrix Q0 and the transformation matrix Q used to transform the matrices Z
and H. Optionally, on exit, this array contains only the orthogonal transformation matrix
Q.

• U1 (input/output DOUBLE PRECISION array, dimension (LDU1, N/2)),

U2 (input/output DOUBLE PRECISION array, dimension (LDU2, N/2)): Optionally, on
entry, these arrays must contain the upper left and right blocks of a given matrix U0, and on
exit, these arrays contain the updated upper left and right blocks U1 and U2 of the product
of the input matrix U0 and the transformation matrix U used to transform the matrices Z
and H. Optionally, on exit, these arrays contain only the upper left and right blocks U1 and
U2 of the orthogonal symplectic transformation matrix U , respectively.

• NEIG (output INTEGER): The number of eigenvalues in λS − H with strictly negative real
part.

3.2.5 Subroutine MB03LD (implements Algorithm 11)

Speci�cation:

SUBROUTINE MB03LD( COMPQ, ORTH, N, A, LDA, DE, LDDE, B, LDB, FG,

$ LDFG, NEIG, Q, LDQ, ALPHAR, ALPHAI, BETA,

$ IWORK, LIWORK, DWORK, LDWORK, BWORK, INFO )

Purpose:

To compute the relevant eigenvalues of a real N-by-N skew-Hamiltonian/Hamiltonian pencil λS − H,
with

S =

[
A D
E AT

]
and H =

[
B F
G −BT

]
.

Optionally, an orthogonal basis of the right de�ating subspace of λS −H corresponding to the eigen-
values with strictly negative real part is computed.

Arguments:

Mode Parameters:

• COMPQ (CHARACTER*1): Speci�es whether to compute the right de�ating subspace corre-
sponding to the eigenvalues of λS −H with strictly negative real part.
= 'N': do not compute the corresponding subspace;
= 'C': compute the corresponding subspace.

• ORTH (CHARACTER*1): Speci�es the technique for computing the orthogonal basis of the
de�ating subspace (if needed).
= 'P': QR factorization with column pivoting;
= 'S': singular value decomposition.

Input/Output Parameters:
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• N (input INTEGER): The order of the pencil λS −H. N ≥ 0, even.

• A (input/output DOUBLE PRECISION array, dimension (LDA, N/2)),

B (input/output DOUBLE PRECISION array, dimension (LDB, N/2)): On entry, these
arrays must contain the matrices A and B. On exit, these arrays are overwritten by some
intermediate results, depending on the value of COMPQ.

• DE (input/output DOUBLE PRECISION array, dimension (LDDE, N/2+1)),

FG (input/output DOUBLE PRECISION array, dimension (LDFG, N/2+1)): On entry,
these arrays must contain the (strictly) upper/lower triangular parts of the skew-symmetric
matrices D and E, and the symmetric F and G. On exit, these arrays are overwritten by
some intermediate results, depending on the value of COMPQ.

• NEIG (output INTEGER): Optionally, the number of eigenvalues in λS − H with strictly
negative real part.

• Q (output DOUBLE PRECISION array, dimension (LDQ, 2*N)): Optionally, on exit, this
array contains an orthogonal basis of the right de�ating subspace corresponding to the eigen-
values of λS −H with strictly negative real part.

• ALPHAR (output DOUBLE PRECISION array, dimension (N/2)),

ALPHAI (output DOUBLE PRECISION array, dimension (N/2)),

BETA (output DOUBLE PRECISION array, dimension (N/2)): The scalars that de�ne
the eigenvalues of the pencil λS−H. Together, the quantities α = (ALPHAR(j),ALPHAI(j)),
and β = BETA(j) represent the j-th eigenvalue of the pencil λS − H, in the form λ =
α/β. Since λ may over�ow, the ratios should not, in general, be computed. Due to the
skew-Hamiltonian/Hamiltonian structure of the pencil, only half of the spectrum is saved in
ALPHAR, ALPHAI and BETA. Speci�cally, the eigenvalues with positive real parts or with non-
negative imaginary parts, when real parts are zero, are returned. The remaining eigenvalues
have opposite signs.

3.2.6 Subroutine MB04BD (implements Algorithm 12)

Speci�cation:

SUBROUTINE MB04BD( JOB, COMPQ1, COMPQ2, N, A, LDA, DE, LDDE, C1,

$ LDC1, VW, LDVW, Q1, LDQ1, Q2, LDQ2, B, LDB, F,

$ LDF, C2, LDC2, ALPHAR, ALPHAI, BETA, IWORK,

$ LIWORK, DWORK, LDWORK, INFO )

Purpose:

To compute the eigenvalues of a real N-by-N skew-Hamiltonian/Hamiltonian pencil λS −H with

S =

[
A D
E AT

]
and H =

[
C V
W −CT

]
.

Optionally, decompositions of S and H will be computed via orthogonal transformations Q1 and Q2

such that

QT1 SJQ1J T =

[
Aout Dout

0 AT
out

]
,

JQT2 J TSQ2 =

[
Bout Fout
0 BT

out

]
= T ,

QT1HQ2 =

[
C1,out Vout

0 CT2,out

]
,

(11)
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and Aout, Bout, C1,out are upper triangular, C2,out is upper quasi-triangular and Dout and Fout are
skew-symmetric. Optionally, the orthogonal transformation matrices Q1 and Q2 will be computed.

Arguments:

Mode Parameters:

• JOB (CHARACTER*1): Speci�es whether only the eigenvalues should be computed, or whether
the matrices S and H should be also transformed into the forms in (11).
= 'E': compute the eigenvalues only;
= 'T': put S and H into the forms in (11), and return the eigenvalues.

• COMPQ1 (CHARACTER*1):

• COMPQ2 (CHARACTER*1): Specify whether or not the orthogonal transformations should be
accumulated in the arrays Q1, Q2.
= 'N': the corresponding transformation matrix is not computed;
= 'I': the corresponding transformation matrix is computed;
= 'U': the corresponding transformation matrix is computed but multiplied by a given input
matrix as described below.

Input/Output Parameters:

• N (input INTEGER): The order of the pencil λS −H. N ≥ 0, even.

• A (input/output DOUBLE PRECISION array, dimension (LDA, N/2)),

C1 (input/output DOUBLE PRECISION array, dimension (LDC1, N/2)): On entry,
these arrays must contain the matrices A and C. Optionally, on exit, these arrays contain
the matrices Aout and C1,out, respectively.

• DE (input/output DOUBLE PRECISION array, dimension (LDDE, N/2+1)),

VW (input/output DOUBLE PRECISION array, dimension (LDVW, N/2+1)): On entry,
these arrays must contain the upper/lower triangular parts of the skew-symmetric matri-
ces D and E, and the symmetric matrices V and W , respectively. Optionally, on exit, these
arrays contain the matrices Dout and Vout, respectively.

• Q1 (input/output DOUBLE PRECISION array, dimension (LDQ1, N)):Optionally, on en-
try, this array must contain a given matrix Q, and on exit, this array contains the product of
the input matrix Q and the transformation matrix Q1 used to transform the matrices S and
H. Optionally, on exit, this array contains only the orthogonal transformation matrix Q1.

• Q2 (output DOUBLE PRECISION array, dimension (LDQ2, N)): Optionally, on exit, this
array contains the product of the matrix JQJ T and the transformation matrix Q2 used to
transform the matrices S and H. Optionally, on exit, this array contains only the orthogonal
transformation matrix Q2.

• B (output DOUBLE PRECISION array, dimension (LDB, N/2)),

C2 (output DOUBLE PRECISION array, dimension (LDC2, N/2)): Optionally, on exit,
these arrays contain the matrices Bout and C2,out, respectively.

• F (output DOUBLE PRECISION array, dimension (LDF, N/2)): Optionally, on exit, this
array contains the strictly upper triangular part of the matrix Fout.

• ALPHAR (output DOUBLE PRECISION array, dimension (N/2)),

ALPHAI (output DOUBLE PRECISION array, dimension (N/2)),
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BETA (output DOUBLE PRECISION array, dimension (N/2)): The scalars that de�ne
the eigenvalues of the pencil λS−H. Together, the quantities α = (ALPHAR(j),ALPHAI(j)),
and β = BETA(j) represent the j-th eigenvalue of the pencil λS − H, in the form λ =
α/β. Since λ may over�ow, the ratios should not, in general, be computed. Due to the
skew-Hamiltonian/Hamiltonian structure of the pencil, only half of the spectrum is saved in
ALPHAR, ALPHAI and BETA. Speci�cally, the eigenvalues with positive real parts or with non-
negative imaginary parts, when real parts are zero, are returned. The remaining eigenvalues
have opposite signs.

3.2.7 Subroutine MB04HD (implements Algorithm 13)

Speci�cation:

SUBROUTINE MB04HD( COMPQ1, COMPQ2, N, A, LDA, B, LDB, Q1, LDQ1,

$ Q2, LDQ2, IWORK, LIWORK, DWORK, LDWORK, BWORK,

$ INFO )

Purpose:

To compute the transformed matrices A and B, using orthogonal matrices Q1 and Q2 for a real N-by-N
regular pencil

λA− B = λ

[
A11 0
0 A22

]
−
[

0 B12

B21 0

]
, (12)

where A11, A22 and B12 are upper triangular, B21 is upper quasi-triangular and the generalized matrix
product A−111 B12A

−1
22 B21 is in periodic Schur form, such that QT2AQ1 is upper triangular, QT2 BQ1 is

upper quasi-triangular, and the matrix pencil λQT2AQ1 −QT2 BQ1 is in generalized Schur form.

Arguments:

Mode Parameters:

• COMPQ1 (CHARACTER*1),

COMPQ2 (CHARACTER*1): Specify whether or not the orthogonal transformations should be
accumulated in the arrays Q1 and Q2, respectively.
= 'N': the corresponding transformation matrix is not computed;
= 'I': the corresponding transformation matrix is computed;
= 'U': the corresponding transformation matrix is computed but multiplied by a given input
matrix as described below.

Input/Output Parameters:

• N (input INTEGER): Order of the pencil λA− B, N ≥ 0, even.

• A (input/output DOUBLE PRECISION array, dimension (LDA, N)),

B (input/output DOUBLE PRECISION array, dimension (LDB, N)): On entry, these ar-
rays must contain the matrices A and B in (12). The zero (o�-)diagonal blocks need not be
set to zero. On exit, these arrays contain the transformed upper (quasi-)triangular matrices.

• Q1 (input/output DOUBLE PRECISION array, dimension (LDQ1, N)),

Q2 (input/output DOUBLE PRECISION array, dimension (LDQ2, N)):Optionally, on en-
try, these arrays must contain given matrices Q01 and Q02, and on exit, these arrays contain
the product of the input matrices Q01 and Q02, and the transformation matrices Q1 and
Q2, respectively, used to transform the matrices A and B. Optionally, on exit, these arrays
contain only the orthogonal transformation matrices Q1 and Q2.
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3.2.8 Subroutine MB03JD (implements Algorithm 14)

Speci�cation:

SUBROUTINE MB03JD( COMPQ, N, A, LDA, D, LDD, B, LDB, F, LDF, Q,

$ LDQ, NEIG, IWORK, LIWORK, DWORK, LDWORK, INFO )

Purpose:

To move the eigenvalues with strictly negative real parts of an N-by-N real skew-Hamiltonian/Hamil-
tonian pencil λS −H in structured Schur form with

S =

[
A D
0 AT

]
and H =

[
B F
0 −BT

]
to the leading principal subpencil while keeping the triangular form. Above, A is upper triangular
and B upper quasi-triangular. The matrices S and H are transformed by an orthogonal matrix Q
such that

Sout = JQTJ TSQ =

[
Aout Dout

0 AT
out

]
, and Hout = JQTJ THQ =

[
Bout Fout
0 −BT

out

]
, (13)

where Aout is upper triangular and Bout is upper quasi-triangular. Optionally, the matrix Q that
ful�lls (13) is computed.

Arguments:

Mode Parameters:

• COMPQ (CHARACTER*1): Speci�es whether or not the orthogonal transformations should be
accumulated in the array Q.
= 'N': the transformation matrix is not computed;
= 'I': the transformation matrix is computed;
= 'U': the transformation matrix is computed but multiplied by a given input matrix as
described below.

Input/Output Parameters:

• N (input INTEGER): The order of the pencil λS −H. N ≥ 0, even.

• A (input/output DOUBLE PRECISION array, dimension (LDA, N/2)),

B (input/output DOUBLE PRECISION array, dimension (LDB, N/2)): On entry, these
arrays must contain the matrices A and B. On exit, these arrays contain the transformed
matrices Aout and Bout, respectively.

• D (input/output DOUBLE PRECISION array, dimension (LDD, N/2)),

F (input/output DOUBLE PRECISION array, dimension (LDF, N/2)): On entry, these
arrays must contain the (strictly) upper triangular parts of the matrices D and F . On exit,
these arrays contain the transformed (strictly) upper triangular parts of the matrices Dout

and Fout, respectively.

• Q (input/output DOUBLE PRECISION array, dimension (LDQ, N)): Optionally, on en-
try, this array must contain a given matrix Q0, and on exit, this array contains the product
of the input matrix Q0 and the transformation matrix Q used to transform the matrices S
and H. Optionally, on exit, this array contains only the orthogonal transformation matrix
Q.

• NEIG (output INTEGER): The number of eigenvalues in λS − H with strictly negative real
part.
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(b) Semidiscretized Stokes equation

Figure 7: Computed purely imaginary eigenvalues of two skew-Hamiltonian/Hamiltonian example matrix
pencils

4 Numerical Results

In this section we present some numerical results of our implementations. The tests have been performed
on a 2.6.32-31-generic Ubuntu machine with Intel R©CoreTM2 Quad CPU Q9550 with 2.83GHz per core
and 8GB RAM. All codes have been compiled using gfortran with the optimization level -O2 (safe
optimizations). For better handling the codes, MEX gateway functions have been written for calling
the routines from MATLAB 7.14.0.739 (R2012a). For this purpose we also use MATLAB's optimized
LAPACK and BLAS libraries.

4.1 Structure-Preserving Computations

The most important feature of our algorithms is structure-preservation. This means that only reduc-
tions that keep the skew-Hamiltonian/Hamiltonian structure are performed. Therefore, only skew-
Hamiltonian/Hamiltonian perturbations of the eigenvalues are possible. In particular, simple, �nite,
purely imaginary eigenvalues stay on the imaginary axis as long as their pairwise distance is large enough.
In such a situation the perturbation o� the imaginary axis would not lead to the formation of a quadruple
of eigenvalues which is necessary by the Hamiltonian eigensymmetry. In Figure 7, some of the computed
eigenvalues by the QZ algorithm ([8]) and our new method are depicted. For the tests we used extended
skew-Hamiltonian/Hamiltonian pencils for the L∞-norm computation of descriptor systems ([12]). The
pencils are related to models for constrained mass-spring systems or semidiscretized Stokes equations
(see [10] and references therein). The �gure nicely shows that the eigenvalues computed by the standard
QZ algorithm are perturbed o� the imaginary axis whereas the new method preserves the eigenvalue
symmetry. In particular, the new approach allows a reliable determination of the stable eigenvalues. If
we furthermore want to compute the stable de�ating subspaces we have to know these in advance. For the
�rst presented examples (Figure 7(a)), the QZ algorithm computes more stable than unstable eigenvalues
which is impossible by theory. Therefore, also the stable de�ating subspace computed by this method
will have a too high dimension. This undesired behavior is avoided by our method.

A second example that illustrates the superiority of our method arises in the context of gyroscopic
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Figure 8: Computed eigenvalues from a skew-Hamiltonian/Hamiltonian matrix pencil resulting from a
linearized gyroscopic system

systems of the form
Mẍ(t) +Gẋ(t) +Kx(t) = 0 (14)

with M = MT > 0, G = −GT , and K = KT . To analyse stability of such a system we have to consider
the quadratic eigenvalue problem (

Mλ2 +Gλ+K
)
y = 0. (15)

It can be shown that a necessary condition for (14) to be stable is that all eigenvalues of (15) are purely
imaginary [9]. A linearization of (15) to second companion form [11] leads to an eigenvalue problem for
the skew-Hamiltonian/Hamiltonian matrix pencil

λ

[
M G
0 M

]
−
[
0 −K
M 0

]
.

The example we use here is the �Rolling Tires� system from [6] with a system dimension of n = 2697.
The computed eigenvalues for both the QZ algorithm and our method are depicted in Figure 8. For our
algorithm, all eigenvalues are determined to be on the imaginary axis which means that the necessary
stability criterion for the gyroscopic system is ful�lled. However, for the QZ algorithm this is not the case.
Since the QZ algorithm does not respect the skew-Hamiltonion/Hamiltonian structure, all eigenvalues
are perturbed o� the imaginary axis. Some of them are also very far away from the imaginary axis
(the maximum absolute value of the real parts is 1.4836e-03). So in contrast to the structure-preserving
approach, one could think that the necessary stability criterion is not ful�lled.
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4.2 Solving Algebraic Riccati Equations

In this subsection we use our algorithms for computing the solution of algebraic Riccati equations and
compare with the results of the MATLAB function care. We consider continuous-time algebraic Riccati
equations of the form

0 = Q+ATX +XA−XGX, (16)

where A, G, Q, X ∈ Rn×n. In many problems the matrices Q = QT and G = GT are given in factored
form Q = CT Q̃C, G = BR−1BT with C ∈ Rp×n, B ∈ Rn×m, Q̃ = Q̃T ∈ Rp×p, and R = RT ∈ Rm×m. If
Q̃ ≥ 0, R > 0, (A,B) is stabilizable, and (A,C) is detectable, then (16) has a unique, positive semide�nite
symmetric, stabilizing solution X∗.

A popular method for determining X∗ is to compute the stable invariant subspace spanned by

[
U1

U2

]
of the Hamiltonian matrix

H =

[
A −G
−Q −AT

]
=

[
A −BR−1BT

−CT Q̃C −AT
]
∈ R2n×2n.

If U1 is invertible, then X∗ = U2U
−1
1 (see [3] and references therein). Here, we use a slightly more general

approach, namely we compute the right stable de�ating subspace of the skew-Hamiltonian/Hamiltonian
matrix pencil

λS −H = λ

[
In 0
0 In

]
−
[
A −G
−Q −AT

]
∈ R2n×2n

which is equal to the stable invariant subspace of H.
For benchmarking we use the examples collected in [3] which are often di�cult to solve due to ill-

conditioning of the problem or the solution. In Table 2 the relative residuals for each individual problem
are presented. We compared the skew-Hamiltonian/Hamiltonian pencil approach with orthogonalization
via pivoted QR factorization (QRP), singular value decomposition (SVD) and the MATLAB solver (care).
To ensure comparability we use the same scaling technique for the ARE for both our codes and care

(by calling arescale in MATLAB). Except for one example (which also care could not solve), our codes
could compute X∗ in all tests. The relative residuals are most often of the same order of magnitude. For
�ve problems, our codes obtained better results for at least one orthogonalization option (for tests # 5,
13, 14, 31, 32 the relative residual is at least one order of magnitude lower than the one of care). On the
other hand, care performed better for 6 examples (# 8, 12, 15, 17, 24, 34). In particular, for example
17, the di�erence is about 10 orders of magnitude, for the other �ve examples the di�erence is about one
order of magnitude. Similar results are achieved when having a look at the relative errors compared to
the analytic solution if it is known. We omit it since it does not give signi�cantly more information. In
conclusion we can say that both approaches give results of similar quality, even though our codes are not
speci�cally designed for solving algebraic Riccati equations.

4.3 Comparison of Runtimes

In this subsection we discuss the runtimes of our codes and compare them with standard implementations
included in LAPACK. The results are listed in Tables 3 and 4, respectively. In Figure 9 the speedup
factors of the new codes compared to MATLAB's LAPACK implementations are depicted to summarize
these results. In general, pure eigenvalue computations are much faster than the computation of both
eigenvalues and de�ating subspaces. The reason is that for the subspace computation the transformation
matrices for the embedded pencils (of double size) are accumulated in the �nal step. However, during
our tests we often observe that LAPACK routines, even though they are faster, are not able to solve
(random) examples. Especially, for larger problems INFO = N+2 is returned which indicates that the
desired reordering of the eigenvalue could not be successfully performed. Note that LAPACK routines
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Table 2: Relative residuals of the solution of algebraic Riccati equations: Comparison of the new algorithm
with orthogonalization via pivoted QR factorization (QRP), singular value decomposition (SVD), and
the MATLAB solver care

test # ex. # n m p parameters QRP SVD care

1 1.1 2 1 2 3.0044e-15 2.5749e-15 3.0062e-15
2 1.2 2 1 2 7.3931e-16 3.4594e-15 6.5338e-16
3 1.3 4 2 4 2.4751e-15 2.4167e-15 3.9430e-15
4 1.4 8 2 8 2.5514e-15 1.5739e-15 1.1924e-15
5 1.5 9 3 9 8.7957e-15 2.3342e-13 9.3663e-14
6 1.6 30 3 5 8.8269e-12 4.4861e-12 1.4481e-12
7 2.1 2 1 1 ε = 1 9.0528e-16 9.5989e-16 7.5037e-16
8 2.1 2 1 1 ε = 10−6 1.7361e-10 3.2218e-10 0
9 2.2 2 2 1 ε = 1 5.5948e-16 3.7261e-16 1.1068e-15
10 2.2 2 2 1 ε = 10−8 1.5895e-09 7.7370e-10 2.3218e-09
11 2.3 2 1 2 ε = 1 7.3951e-16 1.4259e-15 1.1378e-15
12 2.3 2 1 2 ε = 106 2.0448e-10 3.7537e-11 6.5854e-13
13 2.3 2 1 2 ε = 10−6 1.6745e-21 4.6784e-18 6.8373e-20
14 2.4 2 2 2 ε = 1 0 1.2684e-14 1.1531e-15
15 2.4 2 2 2 ε = 10−7 2.9441e-15 1.1608e-14 1.6454e-16
16 2.5 2 1 2 ε = 1 1.4121e-15 1.3570e-15 1.9343e-15
17 2.5 2 1 2 ε = 0 3.6694e-05 1.2326e-06 1.2232e-15
18 2.6 3 3 3 ε = 1 5.8902e-15 3.8570e-15 5.7262e-15
19 2.6 3 3 3 ε = 106 4.7596e+02 4.4341e+02 6.3670e+02
20 2.7 4 1 2 ε = 1 2.4085e-16 1.6736e-16 1.4054e-15
21 2.7 4 1 2 ε = 10−6 1.9697e-08 3.2989e-11 1.3429e-11
22 2.8 4 1 1 ε = 1 7.4186e-16 4.0395e-15 5.6954e-15
23 2.8 4 1 1 ε = 10−6 3.8032e-15 1.0134e-15 4.6214e-15
24 2.9 55 2 10 #1 1.0737e-11 5.7755e-12 2.4757e-13
25 3.1 9 5 4 3.8305e-15 2.6481e-15 3.2909e-15
26 3.1 39 20 19 3.4076e-15 4.6692e-15 8.0452e-15
27 3.2 8 8 8 2.9567e-15 2.2579e-15 3.7270e-15
28 3.2 64 64 64 9.8352e-15 8.8604e-15 1.2277e-14
29 4.1 21 1 1 q = r = 1.0 1.0359e-06 4.4380e-07 6.8088e-07
30 4.1 21 1 1 q = r = 100.0 2.1010e-05 2.1627e-05 6.3995e-05
31 4.2 20 1 1 a = 0.05, b = c = 0.1, 1.4274e-17 1.1291e-13 1.8773e-13

[β1, β2] = [0.1, 0.5],
[γ1, γ2] = [0.1, 0.5]

32 4.2 100 1 1 a = 0.01, b = c = 1.0, 1.3742e-15 1.2528e-12 3.5524e-12
[β1, β2] = [0.2, 0.3],
[γ1, γ2] = [0.2, 0.3]

33 4.3 60 2 60 ` = 30, µ = 4.0, 7.8279e-15 7.9629e-15 2.6545e-14
δ = 4.0, κ = 1.0

34 4.4 421 211 211 5.1450e-03 1.0845e-05 7.9411e-07
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Table 3: Comparison of runtimes for the real case (measured in secs.)
Problem size eigenvalues only eigenvalues and de�ating subspaces

DGGEV MB04BD DGGES MB03LD

2 3.2480e-06 2.2000e-06 7.7860e-06 2.1138e-05
4 1.1510e-05 1.3725e-05 4.3221e-05 1.1633e-04
8 3.7886e-05 7.3677e-05 1.4393e-04 3.6971e-04
16 1.2640e-04 1.9300e-04 3.6360e-04 1.3859e-03
32 7.1310e-04 7.3620e-04 1.7058e-03 5.0400e-03
64 3.0412e-03 3.0708e-03 8.3355e-03 2.5425e-02
128 1.8980e-02 1.6620e-02 4.3790e-02 1.1256e-01
256 1.4190e-01 1.0272e-01 2.8654e-01 5.8121e-01
512 1.4790e+00 8.9793e-01 2.5960e+00 3.9449e+00
1024 2.2127e+01 1.2964e+01 4.8888e+01 4.5998e+01
2048 4.2508e+02 2.6144e+02 5.6186e+02 6.3338e+02
4096 2.9650e+03 2.8367e+03 4.2058e+03 5.5788e+03

can much better exploit blocked codes of Level 3 BLAS which is not the case for our codes since they are
algorithmically based on Givens rotations. Even though the panel blocking technique we present here
gives some improvements for larger examples there is still the question whether one can �nd better ways
of blocking our codes.

There are also signi�cant di�erences in the behavior of the real and complex codes. The real codes
have relatively constant speedup factors for small and medium-size problems up to orders of about 128.
Then, the speedup factors increase up to order 2048 and then decrease again. However, for the complex
codes, the speedups are constant for problems up to order 256 and get signi�cantly slower for larger
problems. Fortunately, for larger problems, we have developed blocked codes which are able to avoid this
slow-down, see also Subsection 4.5.

4.4 Factored Versus Unfactored Matrix Pencils

In this subsection we compare the results of the previous subsection with the factored versions of the
algorithms with respect to accuracy, memory requirements and speed.

4.4.1 Accuracy

We begin with an analysis of the obtained accuracy. We performed tests on random skew-Hamiltoni-

an/Hamiltonian pencils of order 40. For the factored algorithms we choose Z =

[
A 0
0 I20

]
with a random

matrix A. Then we can easily form

S = JZHJ TZ =

[
A 0
0 AH

]
without any rounding error. This allows a fair comparison between the codes for factored and unfactored
problems. First we analyze the accuracy of the computed eigenvalues. Therefore, we performed 1000
tests and compute the maximum of the reciprocal condition numbers κmax of the matrices λjS − H,
j = 1, . . . , 20 for each problem. We divide the computed results into di�erent classes and list the number
of elements in each class in Table 5. Furthermore, we observe that in the real case, the unfactored codes
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Table 4: Comparison of runtimes for the complex case (measured in secs.)
Problem size eigenvalues only eigenvalues and de�ating subspaces

ZGGEV MB04FD ZGGES MB03LZ

2 7.7400e-06 4.7300e-06 2.7047e-05 4.1847e-05
4 2.3252e-05 2.2831e-05 5.2271e-05 9.3827e-05
8 8.2346e-05 7.5673e-05 1.2291e-04 2.2438e-04
16 3.1020e-04 3.1190e-04 4.6900e-04 7.7210e-04
32 1.4953e-03 1.4844e-03 2.5219e-03 3.4171e-03
64 8.7930e-03 9.0812e-03 1.4392e-02 1.9041e-02
128 5.8440e-02 5.6700e-02 9.2550e-02 1.1988e-01
256 4.5301e-01 4.5600e-01 6.2856e-01 9.6518e-01
512 3.4875e+00 7.6826e+00 4.6978e+00 1.4286e+01
1024 3.8185e+01 1.4554e+02 5.6904e+01 2.6081e+02
2048 4.9624e+02 1.2935e+03 8.2872e+02 2.1489e+03
4096 4.8410e+03 1.0849e+04 7.7507e+03 1.7189e+04
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Figure 9: Speedup factors of the new routines compared to LAPACK software
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Table 5: Comparison of the errors of the eigenvalues
real case complex case

unfactored factored unfactored factored

10−17 ≤ κmax < 10−16 0 0 29 44
10−18 ≤ κmax < 10−17 825 805 932 926
10−19 ≤ κmax < 10−18 155 162 39 30
10−20 ≤ κmax < 10−19 6 17 0 0

κmax < 10−20 14 16 0 0

Table 6: Comparison of the errors of the de�ating subspaces
real case complex case

unfactored factored unfactored factored

10−11 ≤ α < 10−10 1 0 0 0
10−12 ≤ α < 10−11 9 11 0 3
10−13 ≤ α < 10−12 82 96 38 62
10−14 ≤ α < 10−13 900 888 962 935
10−15 ≤ α < 10−14 8 5 0 0

were more accurate for 500 examples. For the complex case this was the case for 516 examples. We can
conclude that the computed eigenvalues are similarly accurate for both types of codes.

We also have a look at the accuracy of the de�ating subspaces. Let colspanQ be the computed stable
de�ating subspace. To measure the error we determine the angle α between the subspaces colspan(SQ)
and colspan(HQ). Again, we perform 1000 tests and divide the results into classes listed in Table 6.
Now, the unfactored version is more accurate for 615 examples in the real and for 592 examples in the
complex case, respectively. Therefore, we can conclude that the subspace computation is slightly more
accurate in the unfactored case.

4.4.2 Speed and Memory Requirements

We brie�y compare the timing results of the factored and unfactored codes which are listed in Table 7. A
run of the factored versions needs approximately 1.5 � 2 times as long as one of the unfactored versions.
This is simply due to fact that also more matrices (usually ≈ 50% more) have to be updated within the
factored codes. Also this higher amount of matrices has to be stored which leads to an approximately
50% higher memory usage.

4.4.3 Conclusion

In conclusion, we can say that one should always use the unfactored version of the code whenever the
matrix S is explicitly given or can be formed without any rounding errors. This is due to the lower
accuracy, larger runtimes and higher memory usage of the factored versions. However, one might think of
situations where only the factor Z is known and it is not possible to appropriately form S due to numerical
errors. Then we still recommend to use the factored versions even if there are all the disadvantages
mentioned above.
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Table 7: Comparison of runtimes for factored and unfactored versions (measured in secs.)
Problem size real case complex case

unfactored factored unfactored factored

2 2.1149e-05 3.7359e-05 4.1219e-05 7.4963e-05
4 5.3765e-05 9.4412e-05 8.9305e-05 1.8112e-04
8 3.6373e-04 5.1282e-04 2.3065e-04 4.2514e-04
16 1.4868e-03 1.8846e-03 7.5680e-04 1.1702e-03
32 5.9223e-03 7.8657e-03 3.2732e-03 5.6365e-03
64 2.3258e-02 3.1986e-02 1.8261e-02 2.8526e-02
128 1.0901e-01 1.4402e-01 1.1473e-01 1.9216e-01
256 5.7424e-01 7.9756e-01 9.2289e-01 1.6150e+00
512 3.8463e+00 6.1073e+00 1.4380e+01 3.3246e+01
1024 4.6299e+01 1.0119e+02 2.5326e+02 4.1394e+02
2048 6.0400e+02 9.5667e+02 2.0491e+03 3.5848e+03
4096 5.4444e+03 7.9957e+03 1.6688e+04 2.8164e+04

4.5 Blocked Versus Unblocked Code

As already mentioned above, the routines get relatively slow if the problem gets too large. This is due
to the unoptimized cache usage. Therefore, we have implemented the unfactorized algorithms using the
panel blocking technique from Subsection 2.3. For illustration we generated a random example of order
2048 and compared the runtimes of the unblocked code with those of the blocked code for di�erent block
sizes NB. The results can be found in Table 8. The optimal values are marked in boldface font. The time
savings can be signi�cant. For computing the eigenvalues of a complex pencil the reduction can be to
less than 50% of the time needed for the unblocked code. Note that there is only a slight speedup for
the subspace computation in the real case since the time-consuming routine MB04HD cannot be blocked.
Mostly, the optimal timings are attained for NB = 8, however almost optimal timings are observed for all
NB = 4, . . . , 128, so the choice of NB is �exible. An important point is that the problem must be su�ciently
large in order to bene�t from the panel blocking, otherwise one would even loose performance, especially
for small block sizes. Finally, we also compare the performance of our blocked codes for NB = 8 with
LAPACK for problems size of 512 to 4096. The speedup factors are depicted in Figure 10. For real
problems we can achieve good speedups compared to LAPACK. When computing only the eigenvalues
we can achieve a speedup factor of about 3.5. When we also compute the de�ating subspaces we still
get a factor of 1.2, so we are still faster than LAPACK. However, this is not the case anymore when
we consider complex problems. In this case we can only achieve speedups of about 0.4 to 0.9, but the
blocked codes are still faster than the unblocked ones.

5 Summary

In this paper we have presented implementation details and interface descriptions for structure-preserving
algorithms for the computation of the eigenvalues and stable de�ating subspaces of skew-Hamiltonian/Ha-
miltonian matrix pencils in FORTRAN 77. The advantages of our method are the increased reliability
since critical purely imaginary eigenvalues are not perturbed from the imaginary axis (as long as their
pairwise distance is large enough). This also allows the safe computation of the associated stable de�ating
subspaces of the pencil since the perturbation of eigenvalues from the left into the right half-plane (or
vice versa) is avoided. Numerical examples have shown that the runtimes are often higher compared
to LAPACK routines. However, a panel blocking technique has signi�cantly improved performance for
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Table 8: Comparison of runtimes for blocked and unblocked code (measured in secs.)
block size NB eigenvalues only eigenvalues and de�ating subspaces

real case complex case real case complex case

unblocked 224.23 1332.72 582.65 2173.03
1 200.91 922.11 546.95 1644.15
2 147.87 738.48 517.41 1458.51
4 133.90 662.78 483.16 1365.91
8 132.31 657.39 466.02 1345.67
16 146.86 680.06 470.36 1383.82
32 139.47 680.46 469.58 1363.19
64 138.72 672.18 469.72 1376.00
128 139.44 700.46 459.48 1400.46
256 139.62 1024.32 468.70 1775.13
512 151.18 1116.98 482.61 1844.09
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Figure 10: Speedup factors of the blocked codes compared to LAPACK software for larger problem sizes
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larger problems.
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