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Abstract

We implement a structure-preserving numerical algorithm for extracting the eigenvectors associated to
the purely imaginary eigenvalues of skew-Hamiltonian/Hamiltonian matrix pencils. We compare the new
algorithm with the QZ algorithm using random examples with di�erent di�culty. The results show that
the new algorithm is signi�cantly faster, more robust, and more accurate, especially for hard examples.

Keywords: Eigenvalues, eigenvectors, skew-Hamiltonian/Hamiltonian matrix pencil, reliability, struc-
ture-preserving algorithm.



1 Introduction

Skew-Hamiltonian/Hamiltonian matrix pencils have a wide range of applications in systems and control
theory, for instance in linear-quadratic optimal control [17], H∞ optimal control [19], for computing
system norms [2], or analyzing system properties, such as passivity or contractivity [9, 8, 10], or a
counterclockwise input/output dynamics [16, 6]. In these applications, di�erent spectral information is
needed, such as eigenvalues, eigenvectors, and de�ating subspaces. The results presented in this paper are
motivated by the following problem. In electrical engineering it is common to model electrical circuits by
di�erential-algebraic equations or descriptor systems. Electrical circuits have many important properties,
for instance they cannot internally generate energy which is called passivity. This property should also
be re�ected in the equations that model the circuit. However, due to errors introduced in the modeling
process, e.g., by linearization, model approximation, or model order reduction, the resulting model is not
always passive. In this case we need to perform a post-processing of the equations in order to restore
the passivity property which is important to obtain meaningful results when simulating this model. This
process is called passivity enforcement and is typically done by perturbing the system or parts of it
[10, 14, 15].

Passivity can be characterized by the purely imaginary eigenvalues of an associated skew-Hamilto-
nian/Hamiltonian matrix pencil. Passivity is then enforced by perturbing this pencil which results in
a movement of the purely imaginary eigenvalues. This process is iteratively repeated until no purely
imaginary eigenvalues exist. To compute optimal perturbations not only the eigenvalues have to be
computed but also the corresponding eigenvectors, see, e.g., [10, 14, 15]. This report focuses on the
actual computation of these eigenvectors.

Standard numerical methods to compute eigenvalues, eigenvectors and de�ating subspaces rely on the
generalized Schur decomposition [7]. However, this factorization does not respect the structure of the pen-
cil. Therefore, one is interested in a skew-Hamiltonian/Hamiltonian Schur-like form. Unfortunately, when
purely imaginary eigenvalues exist, di�culties arise because of the possible non-existence of such a struc-
tured Schur form. To avoid this problem, the pencil is embedded into a skew-Hamiltonian/Hamiltonian
pencil of double size. A structure-preserving algorithm for computing the purely imaginary eigenvalues
in a very accurate and reliable manner is presented in [1]. An algorithm for the computation of the
corresponding eigenvectors based on the structured canonical forms given in [1], is stated in [5].

This paper describes the FORTRAN 77 routine MB04BV that has been implemented to extract the
eigenvectors corresponding to the simple, �nite, purely imaginary eigenvalues. We give a brief overview of
the theoretical foundations, the algorithm outline, details of the implementation, and present numerical
results obtained by MB04BV.

2 Theory

In this report we deal with the following matrix structures.

De�nition 1. [1] Let J :=
[

0 In
−In 0

]
, where In is the n× n identity matrix.

(i) A matrix H ∈ R2n×2n is Hamiltonian if (HJ )T = HJ .

(ii) A matrix N ∈ R2n×2n is skew-Hamiltonian if (NJ )T = −NJ .

(iii) A real matrix pencil λN −H is skew-Hamiltonian/Hamiltonian if N is skew-Hamiltonian and H
is Hamiltonian.

Skew-Hamiltonian/Hamiltonian pencils satisfy the Hamiltonian spectral symmetry, i.e., eigenvalues
occur in pairs {λ,−λ} if they are purely real or imaginary, or otherwise in quadruples

{
λ,−λ, λ̄,−λ̄

}
,
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Figure 1: Hamiltonian eigensymmetry

see Figure 1. Numerical algorithms should preserve this structure in order to get meaningful results.
To compute the eigenvalues of a skew-Hamiltonian/Hamiltonian matrix pencil, we use the fact that
J -congruence transformations of the form

λÑ − H̃ := JQTJ T (λN −H)Q

with a nonsingular matrix Q preserve the skew-Hamiltonian/Hamiltonian structure. Therefore, we hope
that we can compute an orthogonal matrix Q such that

JQTJ T (λN −H)Q = λ

[
N11 N12

0 N T
11

]
−
[
H11 H12

0 −HT11

]
is in skew-Hamiltonian/Hamiltonian Schur form, i.e., the subpencil λN11 − H11 is in generalized Schur
form [12]. Unfortunately, not every skew-Hamiltonian/Hamiltonian pencil has this form, since pairs of
simple purely imaginary eigenvalues cannot be represented in this structure. In this case, we embed the
matrix pencil into another double-sized matrix pencil to solve the problem as follows. We introduce the
orthogonal matrices

Y =

√
2

2

[
I2n I2n
−I2n I2n

]
, P =


In 0 0 0
0 0 In 0
0 In 0 0
0 0 0 In

 , X = YP.

Then we de�ne the double-sized matrix pencils

λBN − BH := λ

[
N 0
0 N

]
−
[
H 0
0 −H

]
,

and
λB̃N − B̃H := X T (λBN − BH)X .

The 4n×4n matrix pencil λB̃N −B̃H is again real skew-Hamiltonian/Hamiltonian with the same eigenval-
ues (with double algebraic, geometric, and partial multiplicities) as the original pencil. To compute the
eigenvalues one uses the generalized symplectic URV decomposition which is summarized in the following
theorem (see the real-case versions of the results in [1]).
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Theorem 2. Let λN −H be a regular real 2n × 2n skew-Hamiltonian/Hamiltonian pencil. Then there
exist real orthogonal 2n× 2n matrices Q1, Q2 such that

QT1NJQ1J T =

[
N1 N2

0 NT
1

]
,

JQT2 J TNQ2 =

[
M1 M2

0 MT
1

]
:=M,

QT1HQ2 =

[
H11 H12

0 HT
22

]
,

(1)

where N1, M1, and H11 are upper triangular, H22 is upper quasi-triangular, N2 and M2 are skew-
symmetric and the generalized matrix product N−11 H11M

−1
1 H22 is in real periodic Schur form [7].

Then, by using the matrix decomposition from (1) we can compute an orthogonal matrix Q such that

λB̂N − B̂H : = JQTJ T
(
λB̃N − B̃H

)
Q

= λ


N1 0 N2 0
0 M1 0 M2

0 0 NT
1 0

0 0 0 MT
1

−


0 H11 0 H12

−H22 0 H12 0
0 0 0 HT

22

0 0 −HT
11 0

 , (2)

with Q = PT
[
JQ1J T 0

0 Q2

]
P. Note, that we never explicitly construct the embedded pencils. It is

su�cient to compute the necessary parts of the matrices in (1). The spectrum of λN −H is given by

Λ(N ,H) = ±i
√

Λ
(
N−11 H11M

−1
1 H22

)
,

which can be determined by evaluating the entries on the 1× 1 and 2× 2 diagonal blocks of the matrices
only. In particular, the simple, �nite, purely imaginary eigenvalues correspond to the 1 × 1 diagonal
blocks of this matrix product. Provided that the pairwise distance of the simple, �nite, purely imaginary
eigenvalues is su�ciently large, they can be computed in a robust way without any error in the real part.
However, if a purely imaginary eigenvalue has an algebraic multiplicity larger than one or if two purely
imaginary eigenvalues are close, they might still be perturbed o� the imaginary axis. This depends on
the sign-characteristic of the involved eigenvalues, similarly as in [18]. Therefore, for the rest of the paper
we assume for simplicity that all �nite, purely imaginary eigenvalues are simple.

To compute the eigenvectors corresponding to the �nite, purely imaginary eigenvalues we will make
use of the structure of λB̂N − B̂H. As in passivity enforcement we only need the positive imaginary
eigenvalues, i.e., those with positive imaginary parts, we restrict ourselves to the computation of the
eigenvectors corresponding to these eigenvalues.

To derive an algorithm for computing the desired eigenvectors we make use of the following two
lemmas. In the following we assume that the matrix pencil λ

[
N1 0
0 M1

]
−
[

0 H11

H22 0

]
is regular which is also

equivalent to the regularity of the pencils λ
[
N1 0
0 M1

]
−
[

0 H11

−H22 0

]
and λB̂N − B̂H in (2).

Lemma 3. The vector [ v1v2 ] is a right eigenvector of the matrix pencil λ
[
N1 0
0 M1

]
−
[

0 H11

H22 0

]
corresponding

to the eigenvalue ω0 if and only if
[−iv1
v2

]
is a right eigenvector of the matrix pencil λ

[
N1 0
0 M1

]
−
[

0 H11

−H22 0

]
corresponding to the eigenvalue iω0.

Proof. Let [ v1v2 ] be a right eigenvector of λ
[
N1 0
0 M1

]
−
[

0 H11

H22 0

]
corresponding to the eigenvalue ω0. Then

we have

ω0N1v1 = H11v2,

ω0M1v2 = H22v1.
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This is equivalent to

iω0N1(−iv1) = H11v2,

iω0M1v2 = −H22(−iv1).

In other words,
[−iv1
v2

]
is a right eigenvector of the matrix pencil λ

[
N1 0
0 M1

]
−
[

0 H11

−H22 0

]
corresponding

to the eigenvalue iω0. The converse statement can be proven in a completely analogous manner.

Lemma 4. The vector v is a right eigenvector of the matrix pencil λ
[
N1 0
0 M1

]
−
[

0 H11

−H22 0

]
to the

eigenvalue λ0 if and only if the vector [ v0 ] is a right eigenvector of the skew-Hamiltonian/Hamiltonian
matrix pencil λB̂N − B̂H in (2) corresponding to the eigenvalue λ0.

Proof. Trivial.

As an intermediate step, we compute a matrix X whose columns contain the eigenvectors to the
positive real eigenvalues of the pencil λ

[
N1 0
0 M1

]
−
[

0 H11

H22 0

]
. This is done by the following basic steps

already summarized in [5].

Step 1: Reorder the positive real eigenvalues of the generalized matrix product P := N−11 H11M
−1
1 H22 to

the top, i.e., compute orthogonal matrices Ui =
[
U

(1)
i U

(2)
i

]
, i = 1, . . . , 4, such that

UT2 N1U1 =

[
N

(11)
1 N

(12)
1

0 N
(22)
1

]
, UT2 H11U3 =

[
H

(11)
11 H

(12)
11

0 H
(22)
11

]
,

UT4 M1U3 =

[
M

(11)
1 M

(12)
1

0 M
(22)
1

]
, UT4 H22U1 =

[
H

(11)
22 H

(12)
22

0 H
(22)
22

]

are still in upper (quasi-)triangular form, but the eigenvalues of the generalized matrix product

P (11) :=
(
N

(11)
1

)−1
H

(11)
11

(
M

(11)
1

)−1
H

(11)
22 are the positive real ones of P [13].

Step 2: Reorder the eigenvalues λ

[
N

(11)
1 0

0 M
(11)
1

]
−
[

0 H
(11)
11

H
(11)
22 0

]
by computing orthogonal matrices V1 =[

V
(1)
1 V

(2)
1

]
, V2 =

[
V

(1)
2 V

(2)
2

]
such that

V T1

(
λ

[
N

(11)
1 0

0 M
(11)
1

]
−

[
0 H

(11)
11

H
(11)
22 0

])
V2 = λ

[
R11 R12

0 R22

]
−
[
S11 S12

0 S22

]
,

where Λ(R11, S11) ⊂ R+ and Λ(R22, S22) ⊂ R−.

Step 3: Compute the eigenvectors of λR11 − S11, i.e., compute a matrix W such that S11W = R11WD,
where D is an appropriate diagonal matrix composed of the eigenvalues of λR11 − S11.

Step 4: Collect the information contained in the relevant columns of the transformation matrices to obtain

X :=

[
X(1)

X(2)

]
:=

[
U

(1)
1 0

0 U
(1)
3

]
V

(1)
2 W.

Now, using Lemma 3 it turns out that

X̃ :=

[
−iX(1)

X(2)

]
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contains the eigenvectors corresponding to the positive imaginary eigenvalues of the pencil λ
[
N1 0
0 M1

]
−[

0 H11

−H22 0

]
. Then, by employing Lemma 4, the columns of the matrix

[
X̃
0

]
contain eigenvectors to the

positive imaginary eigenvalues of the pencil λB̂N−B̂H. Note that all eigenvalues of this pencil have double
algebraic, geometric, and partial multiplicities. So the matrix

[
X̃
0

]
contains only half of the eigenvectors

to each positive imaginary eigenvalue of λB̂N − B̂H. However, this is no problem, since by later turning
over to the original pencil λN −H, we do not need the other half of the eigenvectors.

Now, the corresponding eigenvectors to the positive imaginary eigenvalues of the double-sized matrix
pencil λBN − BH are given by

Y :=

[
Y1
Y2

]
= XQ

[
X̃
0

]
=

1√
2


−iQ(22)

1 X(1) +Q(11)
2 X(2)

iQ(12)
1 X(1) +Q(21)

2 X(2)

iQ(22)
1 X(1) +Q(11)

2 X(2)

−iQ(12)
1 X(1) +Q(21)

2 X(2)

 ,

where Q1 :=

[
Q(11)

1 Q(12)
1

Q(21)
1 Q(22)

1

]
with Q(ij)

1 ∈ Rn×n and Q2 :=

[
Q(11)

2 Q(12)
2

Q(21)
2 Q(22)

2

]
with Q(ij)

2 ∈ Rn×n. In the

equation above, only Y1 contains the desired eigenvectors of the matrix pencil λN −H and Y has not to
be computed explicitly. More speci�cally, we can express Y1 as

Y1 :=
1√
2

[
−iQ(22)

1 X(1) +Q(11)
2 X(2)

iQ(12)
1 X(1) +Q(21)

2 X(2)

]
.

Within the next sections we will focus on the implementation of the SLICOT routine MB04BV that enables
us to compute Y1.

3 Speci�cation

SUBROUTINE MB04BV( N, N1, LDN1, M1, LDM1, H11, LDH11, H22, LDH22,

$ Q1, LDQ1, Q2, LDQ2, NEIG, ALPHAI, BETA, EVEC,

$ LDEVEC, DWORK, LDWORK, BWORK, INFO )

C

C .. Scalar Arguments ..

INTEGER INFO, LDEVEC, LDH11, LDH22, LDM1, LDN1,

$ LDQ1, LDQ2, LDWORK, N, NEIG

C

C .. Array Arguments ..

LOGICAL BWORK( * )

DOUBLE PRECISION ALPHAI( * ), BETA( * ), DWORK( * ),

$ H11( LDH11, * ), H22( LDH22, * ),

$ M1( LDM1, * ), N1( LDN1, * ), Q1( LDQ1, * ),

$ Q2( LDQ2, * )

COMPLEX*16 EVEC( LDEVEC, * )

4 Argument List

4.1 Input/Output Parameters

N - (input) INTEGER
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The order of the matrix pencil. N has to be greater than or equal to 0. N also must be even.

N1 - (input) DOUBLE PRECISION array, dimension (LDN1, N/2)

On entry, the leading N/2-by-N/2 part of this array must contain the upper triangular matrix N1

in (1).

LDN1 - INTEGER

The leading dimension of the array N1. The parameter LDN1 has to be greater or equal than
max {1, N/2}.

M1 - (input) DOUBLE PRECISION array, dimension (LDM1, N/2)

On entry, the leading N/2-by-N/2 part of this array must contain the upper triangular matrix M1

in (1).

LDM1 - INTEGER

The leading dimension of the array M1. The parameter LDM1 has to be greater or equal than
max {1, N/2}.

H11 - (input) DOUBLE PRECISION array, dimension (LDH11, N/2)

On entry, the leading N/2-by-N/2 part of this array must contain the upper triangular matrix H11

in (1).

LDH11 - INTEGER

The leading dimension of the array H11. The parameter LDH11 has to be greater or equal than
max {1, N/2}.

H22 - (input) DOUBLE PRECISION array, dimension (LDH22, N/2)

On entry, the leading N/2-by-N/2 part of this array must contain the upper quasi-triangular matrix
H22 in (1).

LDH22 - INTEGER

The leading dimension of the array H22. The parameter LDH22 has to be greater or equal than
max {1, N/2}.

Q1 - (input) DOUBLE PRECISION array, dimension (LDQ1, N)

On entry, the leading N-by-N part of this array must contain the orthogonal transformation matrix
Q1 in (1).

LDQ1 - INTEGER

The leading dimension of the array Q1. The parameter LDQ1 has to be greater or equal than
max {1, N}.

Q2 - (input) DOUBLE PRECISION array, dimension (LDQ2, N)

On entry, the leading N-by-N part of this array must contain the orthogonal transformation matrix
Q2 in (1).

LDQ2 - INTEGER

The leading dimension of the array Q2. The parameter LDQ2 has to be greater or equal than
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max {1, N}.

NEIG - (output) INTEGER

The number of simple, �nite, positive imaginary eigenvalues.

ALPHAI - (output) DOUBLE PRECISION array, dimension (N/2),
BETA - (output) DOUBLE PRECISION array, dimension (N/2)

On exit, the ratio i · ALPHAI(j)/BETA(j), j = 1, . . . , NEIG, represents the simple, �nite, positive
imaginary eigenvalues of the matrix pencil.

EVEC - (output) COMPLEX*16 array, dimension (LDEVEC, N/2)

On exit, the leading N-by-NEIG part of this array contains the eigenvectors corresponding to the
eigenvalues represented by the arrays ALPHAI and BETA in the same order.

LDEVEC - INTEGER

The leading dimension of the array EVEC. The parameter LDEVEC has to be greater or equal than
max {1, N}.

4.2 Workspace

DWORK - DOUBLE PRECISION array, dimension (LDWORK)

On exit, if INFO = 0, DWORK(1) returns the optimal LDWORK. On exit, if INFO = −20, DWORK(1)
returns the minimum value of LDWORK.

LDWORK - INTEGER

The dimension of the array DWORK. LDWORK ≥ 6(N/2)2 + max
{

3N2 + 9N + 16, 272
}
. For good per-

formance LDWORK should be generally larger.

If LDWORK = −1, then a workspace query is assumed; the routine only calculates the optimal size
of the DWORK array, returns this value as the �rst entry of the DWORK array, and no error message
related to LDWORK is issued by XERBLA.

BWORK - LOGICAL array, dimension(N/2)

4.3 Error Indicator

INFO - INTEGER

INFO = 0: Successful exit;
INFO < 0: If INFO = −i, the i-th argument had an illegal value;
INFO = 1: The eigenvalue reordering in MB03KD failed;
INFO = 2: The triangularization or reordering in DGGES failed;
INFO = 3: The eigenvector computation in DGGEV failed.
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5 Numerical Experiments

5.1 Setup of Test Examples

In order to test the performance of MB04BV, we feed it with random examples which have purely imaginary
eigenvalues. We randomly generate matrices E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, D ∈ Rm×m, and
de�ne the transfer function G(s) = C(sE −A)−1B +D. Let

λN −H = λ


E 0 0 0
0 0 0 0
0 0 ET 0
0 0 0 0

−

A B 0 0
C D 0 γIm
0 0 −AT −CT
0 −γIm −BT −DT

 . (3)

Under some assumptions, the matrix pencil λN −H is guaranteed to have purely imaginary eigenvalues
if minω∈R σmax (G(iω)) < γ < ‖G‖L∞

, where σmax(·) denotes the largest singular value and ‖·‖L∞
is the

L∞-norm [19]. Theoretically, when the distance between γ and ‖G‖L∞
decreases, the di�culty of the

example will increase, in the sense that the eigenvalues will be increasingly sensitive to perturbations, as
the numerical results will later demonstrate. This is due to the fact, that there are two purely imaginary
eigenvalues which almost form a non-trivial Jordan block in the Weierstraÿ canonical form [11]. Then, the
transformation matrices will be ill-conditioned, which leads to a higher sensitivity of these eigenvalues.

5.2 Environment and Con�guration

The tests have been performed on a 2.6.32-23-generic-pae Ubuntu machine with Intel R© CoreTM2 Duo
CPU with 3.00GHz and 4GB RAM. The algorithms have been implemented and tested in MATLAB
7.14.0.739 (R2012a).

A FORTRANMEX-�le as an interface between MATLAB and MB04BV has also been written for testing
purposes and improving the user-friendliness. Using MATLAB, one can easily generate random examples,
compute the L∞-norm of the descriptor system, determine the eigenvalues by the structure-preserving
solver MB04BD (see [3, 4] for implementation details) and the corresponding MEX-�le skewHamileig, and
pro�le the performance. The MATLAB interface for MB04BV is given by

[ alpha, beta, evecs ] = sHH_evecs( N1, M1, H11, H22, Q1, Q2 ).

Here, N1, M1, H11, H22, Q1, and Q2 are the matrices N1, M1, H11, H22, Q1, and Q2 in (1), respectively.
The purely imaginary eigenvalues are given by iαi

βi
, and the corresponding eigenvectors are stored in the

columns of evecs in the same order as the eigenvalues.

In this section we also compare our structure-preserving approach with the standard one for general
eigenvalue problems, namely the QZ algorithm (with eigenvalue reordering) [12]. In order to have a fair
comparison of the performance of both methods, we also implemented a FORTRAN 77 subroutine which
combines the QZ algorithm with reordering the purely imaginary eigenvalues to the top by using the
LAPACK subroutines DGGES and DGGEV. For testing, a corresponding MEX-�le has been written.

5.3 Numerical Results

5.3.1 Performance Comparison

In this paragraph we will discuss the behavior of the new approach compared to the QZ algorithm. We
do this by constructing random pencils of the form (3) with n = 100 and m = 5. Table 1 shows the
performance results of both algorithms when computing both desired eigenvalues and eigenvectors for

8



Table 1: Performance comparison
new algorithm QZ algorithm

γ runtime avg. rel. residual runtime avg. rel. residual failure rate

‖G‖L∞

(
1− 10−2

)
99.48 1.1936e-13 154.62 1.0388e-13 0.0%

‖G‖L∞

(
1− 10−4

)
99.53 1.5555e-13 153.96 3.2024e-13 0.1%

‖G‖L∞

(
1− 10−6

)
99.45 1.3882e-13 153.74 3.2727e-12 0.8%

‖G‖L∞

(
1− 10−8

)
99.92 1.1820e-13 153.69 1.9054e-11 4.6%

‖G‖L∞

(
1− 10−10

)
99.42 1.3450e-13 151.76 6.6909e-11 28.9%

‖G‖L∞

(
1− 10−12

)
99.51 1.3827e-13 147.13 6.5136e-11 78.7%

di�erent values of γ, from the �easier� examples to the �harder� ones. Each row contains the results for
a thousand test runs. The accuracy of the results is measured by computing the average of the relative
residuals given by ‖(λiN −H) vi‖2 / ‖vi‖2. The runtime is given in seconds, using the tic and toc

commands in MATLAB. Furthermore, for the QZ algorithm we have an additional column that indicates
the percentage of examples that could not be solved. This is due to the fact that eigenvalues might be
perturbed o� the imaginary axis and will not be considered as purely imaginary when the distance to the
imaginary axis exceeds a certain threshold. For our tests this value is set to 1e-10. First of all, Table 1
shows that the QZ algorithm needs about 50% more time to execute than the new algorithm. However,
the most important aspect of the new algorithm is the improved reliability. We can see that the failure
rate of the QZ algorithm is dramatically increasing when the examples become more ill-conditioned. By
failure we mean that the algorithm extracts a di�erent number of eigenvectors, compared to the actual
number of purely imaginary eigenvalues. Moreover, even in the cases where the QZ algorithm successfully
extracts the eigenvectors, the average relative residual becomes signi�cantly larger when the condition
gets worse. On the other hand, the performance of the new algorithm is far more reliable and accurate.
Its runtime and accuracy remain at the same level from the �easy� examples to the �harder� ones.

5.3.2 On the Failure of the QZ Algorithm

We now brie�y describe the nature of QZ algorithm's failure by examining a small example. Consider
the randomly generated 6× 6 skew-Hamiltonian/Hamiltonian matrix pencil

λN −H = λ


0.7060 0.2769 0 0 0 0
0.0318 0.0462 0 0 0 0

0 0 0 0 0 0
0 0 0 0.7060 0.0318 0
0 0 0 0.2769 0.0462 0
0 0 0 0 0 0



−


0.7431 0.6555 0.0971 0 0 0
0.3922 0.1712 0.8235 0 0 0
0.6948 0.3171 0.9502 0 0 0.9502

0 0 0 −0.7431 −0.3922 −0.6948
0 0 0 −0.6555 −0.1712 −0.3171
0 0 −0.9502 −0.0971 −0.8235 −0.9502

 ,

with γ = ‖G‖L∞

(
1− 10−6

)
. The spectrum is given by

Λ = {927.5i,−927.5i, 1.161,−1.161,∞,∞}.

In the spectrum, only the purely imaginary eigenvalue 927.5i is interesting to us. The new algorithm
successfully extracts one eigenvector with relative residual 1.8594e-15.
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However, the QZ algorithm fails to extract the eigenvector. Since it does not respect the structure
of the pencil, all purely imaginary eigenvalues will be perturbed o� the imaginary axis. When we are
selecting the purely imaginary eigenvalues, we cannot expect that the real part of an eigenvalue is exactly
zero, as it is for the structure-preserving algorithm. Alternatively, what we do is to ask if the real part is
smaller than some tolerance. This tolerance is empirically set to 1e-10. This is a rather tight bound, but
it illustrates the behavior of the QZ algorithm quite well. However the real part of this eigenvalue after
perturbation is 1.4079e-10. Because the real part is slightly larger than the tolerance, this eigenvalue is
not selected and thus no eigenvector is extracted.

6 Conclusions

In this report we have presented a FORTRAN 77 implementation of a new algorithm for computing
the eigenvectors of a skew-Hamiltonian/Hamiltonian matrix pencil associated to the purely imaginary
eigenvalues. The performed numerical tests clearly indicate that compared to the QZ algorithm the new
method

1. is more robust, especially for ill-conditioned examples;

2. is comparably accurate for well-conditioned examples, and signi�cantly more accurate for ill-condi-
tioned examples;

3. needs only about 2/3 of time to execute.
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