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Abstract. An overview of numerically reliable
algorithms for model reduction is presented. The
covered topics are the reduction of stable and un-
stable linear systems as well as the computational
aspects of frequency weighted model reduction. The
presentation of available software tools focuses on a
recently developed Fortran library RASP-MODRED
implementing a new generation of numerically reli-
able algorithms for model reduction.

1. INTRODUCTION

Model reduction is of fundamental importance in
many modeling and control applications. The ba-
sic reduction algorithms discussed in this paper be-
long to the class of methods based on or related to
balancing techniques [1, 2, 3, 4] and are primarily in-
tended for the reduction of linear, stable, continuous-
or discrete-time systems. All methods rely on guar-
anteed error bounds and have particular features
which recommend them for use in specific applica-
tions. The basic methods combined with coprime
factorization or spectral decomposition techniques
can be used to reduce unstable systems [5] or to per-
form frequency-weighted model reduction (FWMR)
[6, 7].

The surveyed algorithms represent the latest de-
velopments of various procedures for solving compu-
tational problems appearing in the context of model
reduction. Most algorithms possess desirable at-
tributes as generality, numerical reliability, enhanced
accuracy, and thus are completely satisfactory to
serve as bases for robust software implementations.
Such implementations are available in a recently de-
veloped Fortran 77 library for model reduction called
RASP-MODRED [8]. The implementations of rou-
tines are based on the new linear algebra standard
package LAPACK [9]. It is worth mentioning that
the implemented algorithms are generally superior
to those implemented in the model reduction tools
of commercial packages [10, 11, 12].

2. MODEL REDUCTION ALGORITHMS

Consider the n-th order original state-space model
G := (A, B,C, D) with the transfer-function ma-
trix (TFM) G(λ) = C(λI − A)−1B + D, and let
Gr := (Ar, Br, Cr, Dr) be an r-th order approxima-
tion of the original model (r < n), with the TFM
Gr = Cr(λI−Ar)−1Br +Dr. A large class of model
reduction methods can be interpreted as performing
a similarity transformation Z yielding

[
Z−1AZ Z−1B

CZ D

]
:=




A11 A12 B1

A21 A22 B2

C1 C2 D


 ,

and then defining the reduced model (Ar, Br, Cr, Dr)
as the leading diagonal system (A11, B1, C1, D).
When writing Z := [ T U ] and Z−1 := [ LT V T ]T ,
then Π = TL is a projector on T along L and LT =
Ir. Thus the reduced system is (Ar, Br, Cr, Dr) =
(LAT, LB, CT, D). Partitioned forms as above can
be used to construct a so-called singular perturbation
approximation (SPA). The matrices of the reduced
model in this case are given by

Ar = A11 + A12(γI −A22)−1A21,

Br = B1 + A12(γI −A22)−1B2,

Cr = C1 + C2(γI −A22)−1A21,

Dr = D + C2(γI −A22)−1B2.

where γ = 0 for a continuous-time system and γ = 1
for a discrete-time system. Note that SPAs preserve
the DC-gains of stable original systems.

Specific requirements for model reduction algo-
rithms are formulated and discussed in [13]. Such re-
quirements are: (1) applicability of methods regard-
less the original system is minimal or not; (2) empha-
sis on enhancing the numerical accuracy of computa-
tions; (3) relying on numerically reliable procedures.

The first requirement can be fulfilled by computing
L and T directly, without determining Z or Z−1. In



particular, if the original system is not minimal, then
L and T can be chosen to compute an exact minimal
realization of the original system [14].

The emphasis on improving the accuracy of com-
putations led to so-called algorithms with enhanced
accuracy. In many model reduction methods, the
matrices L and T are determined from two posi-
tive semi-definite matrices P and Q, called generi-
cally gramians. The gramians can be always deter-
mined in Cholesky factorized forms P = ST S and
Q = RT R, where S and R are upper-triangular ma-
trices. The computation of L and T can be done by
computing the singular value decomposition (SVD)

SRT =
[

U1 U2

]
diag(Σ1,Σ2)

[
V1 V2

]T

where

Σ1 = diag(σ1, . . . , σr), Σ2 = diag(σr+1, . . . , σn),

and σ1 ≥ . . . ≥ σr > σr+1 ≥ . . . ≥ σn ≥ 0.
The so-called square-root (SR) methods determine

L and T as [15]

L = Σ−1/2
1 V T

1 R, T = ST U1Σ
−1/2
1 .

If r is the order of a minimal realization of G then the
gramians corresponding to the resulting realization
are diagonal and equal. In this case the minimal
realization is called balanced. The SR approach is
usually very accurate for well-equilibrated systems.
However if the original system is highly unbalanced,
potential accuracy losses can be induced in the re-
duced model if either L or T is ill-conditioned.

In order to avoid ill-conditioned projections, a
balancing-free (BF) approach has been proposed in
[16] in which always well-conditioned matrices L and
T can be determined. These matrices are computed
from orthogonal matrices whose columns span or-
thogonal bases for the right and left eigenspaces of
the product PQ corresponding to the first r largest
eigenvalues σ2

1 , . . . , σ2
r . Because of the need to com-

pute explicitly P and Q as well as their product,
this approach is usually less accurate for moderately
ill-balanced systems than the SR approach.

A balancing-free square-root (BFSR) algorithm
which combines the advantages of the BF and SR
approaches has been introduced in [14]. L and T are
determined as

L = (Y T X)−1Y T , T = X,

where X and Y are n × r matrices with orthogo-
nal columns computed from the QR decompositions
ST U1 = XW and RT V1 = Y Z, while W and Z are
non-singular upper-triangular matrices. The accu-
racy of the BFSR algorithm is usually better than
either of SR or BF approaches.

The SPA formulas can be used directly on a bal-
anced minimal order realization of the original sys-
tem computed with the SR method. A BFSR
method to compute SPAs has been proposed in [17].
The matrices L and T are computed such that the
system (LAT, LB, CT, D) is minimal and the prod-
uct of corresponding gramians has a block-diagonal
structure which allows the application of the SPA
formulas.

Provided the Cholesky factors R and S are known,
the computation of matrices L and T can be done
by using exclusively numerically stable algorithms.
Even the computation of the necessary SVD can be
done without forming the product SRT . Thus the
effectiveness of the SR or BFSR techniques depends
entirely on the accuracy of the computed Cholesky
factors of the gramians. In the following sections we
discuss the computation of these factors for several
concrete model reduction techniques.

3. ALGORITHMS FOR STABLE SYSTEMS

In the balance & truncate (B&T) method [1] P and
Q are the controllability and observability gramians
satisfying a pair of continuous- or discrete-time Lya-
punov equations

AP + PAT + BBT = 0, AT Q + QA + CT C = 0;

APAT + BBT = P, AT QA + CT C = Q.

These equations can be solved directly for the
Cholesky factors of the gramians by using numer-
ically reliable algorithms proposed in [18]. The
BFSR version of the B&T method is described in
[14]. Its SR version [15] can be used to compute
balanced minimal representations. Such represen-
tations are also useful for computing reduced order
models by using the SPA formulas [2] or the Hankel-
norm approximation (HNA) method [4]. A BFSR
version of the SPAs method is described in [17]. Note
that the B&T, SPA and HNA methods belong to
the family of absolute error methods which try to
minimize ‖∆a‖∞, where ∆a is the absolute error
∆a = G−Gr.

The balanced stochastic truncation (BST) method
[3] is a relative error method which tries to minimize
‖∆r‖∞, where ∆r is the relative error defined im-
plicitly by Gr = (I − ∆r)G. In the BST method
the gramian Q satisfies a Riccati equation, while the
gramian P still satisfies a Lyapunov equation. Al-
though the determination with high accuracy of the
Cholesky factor of Q is computationally involved, it
is however necessary to guarantee the effectiveness
of the BFSR approach. Iterative refinement tech-
niques are described for this purpose in [13].

Both the SR and SRBF versions of the B&T, SPA
and BST algorithms are implemented in the RASP-
MODRED library. The implementation of the HNA



method uses the SR version of the B&T method
to compute a balanced minimal realization of the
original system. All implemented routines are ap-
plicable to both continuous- and discrete-time sys-
tems. It is worth mentioning that implementations
provided in commercial software [10, 11, 12] are only
for continuous-time systems.

4. REDUCTION OF UNSTABLE SYSTEMS

The reduction of unstable systems can be performed
by using the methods for stable systems in conjunc-
tion with two imbedding techniques. The first ap-
proach consists in reducing only the stable projec-
tion of G and then including the unstable projection
unmodified in the resulting reduced model. The fol-
lowing is a simple procedure for this computation:

1. Decompose additively G as

G = G1 + G2

such that G1 has only stable poles and G2 has
only unstable poles.

2. Determine G1r, a reduced order approximation
of the stable part G1.

3. Assemble the reduced model Gr as

Gr = G1r + G2.

The second approach is based on computing a sta-
ble rational coprime factorization (RCF) of G say in
the form G = M−1N , where M, N are stable and
proper rational TFMs, and then to reduce the stable
system [ N M ]. From the resulting reduced model
[ Nr Mr ] we obtain Gr = M−1

r Nr.
The coprime factorization approach used in con-

junction with the B&T or BST methods fits in the
general projection formulation introduced in Section
2. The gramians necessary to compute the projec-
tion are the gramians of the system [ N M ]. The
computed matrices L and T by using either the SR
or BFSR methods can be directly applied to the
matrices of the original system. The main computa-
tional problem is how to compute the RCF to allow a
smooth and efficient imbedding which prevents com-
putational overheads. Two factorization algorithms
proposed recently compute particular RCFs which
fulfill these aims: the RCF with prescribed stabil-
ity degree [19] and the RCF with inner denomina-
tor [20]. Both are based on a numerically reliable
Schur technique for pole assignment. The use of
other RCFs is presently under consideration.

RASP-MODRED provides all necessary tools to
perform the reduction of unstable system. Routines
are provided to compute left/right RCFs with pre-
scribed stability degree or with inner denominators,
to compute additive spectral decompositions, or to

perform the back transformations. A modular im-
plementation allows arbitrary combinations between
various factorization and model reduction methods.

5. ALGORITHMS FOR FWMR

The FWMR methods try to minimize a weighted er-
ror of the form ‖W1(G − Gr)W2‖∞, where W1 and
W2 are suitable weighting TFMs. Many controller
reduction problems can be formulated as FWMR
problems [21]. Two basic approaches can be used
to solve such problems. The approach proposed in
[7] can be easily imbedded in the general formula-
tion of Section 2. Provided G and the weights W1

and W2 are all stable TFMs, then P and Q are the
frequency-weighted controllability and observability
gramians of GW2 and W1G, respectively (for details
see [21]). Unfortunately no proof of stability of the
two-sided weighted approximation exists unless ei-
ther W1 = I or W2 = I.

In the second approach we assume that G is sta-
ble and W1, W2 are invertible, having only unsta-
ble poles and zeros. The technique proposed in [6]
to solve the FWMR problem computes first G1 the
n-th order stable projection of W1GW2 and then
computes the r-th order approximation G1r of G1

by using one of methods for stable systems. Fi-
nally Gr results as the r-th order stable projection
of W−1

1 G1rW
−1
2 .

RASP-MODRED provides all necessary tools to
perform FWMR. Special routines based on algo-
rithms proposed in [22] are provided to compute
efficiently the stable projections for the second ap-
proach.

6. THE RASP-MODRED LIBRARY

RASP-MODRED is one of the first numerical li-
braries developed by using the new linear algebra
package LAPACK [9]. The library provides a rich
set of computational facilities for model reduction.
Besides the already mentioned functions, routines
to evaluate Hankel- and L2-norms of TFMs, to per-
form bilinear transformations, to compute systems
couplings, are also available. Many lower level com-
putational routines can have a special importance
for other applications areas. In its present state of
development the library consists of 77 routines and
is continuously extended. Routines for alternative
FWMR methods, for computing normalized RCF,
or for evaluation of L∞-norm are presently under
development.

The implementation of the library has been
done in accordance with the newly established
RASP/SLICOT mutual compatibility concept [23].
Thus the implemented routines belong simultane-
ously to both RASP [24] and SLICOT [25] libraries.
This software sharing strategy is meant to save fu-
ture efforts in developing both libraries.



7. CONCLUSIONS

We presented an up to date overview of numerically
reliable algorithms and associated software tools for
model reduction. The algorithmic richness and the
complexity of the model reduction problems require
efficient and robust software implementations which
can exploit efficiently all structural aspects of the
underlying computational problems. This is possible
only in high level languages such as Fortran. In con-
trast, implementations in MATLAB, although much
more compact than the corresponding Fortran codes,
are generally less efficient with respect to both op-
eration count and memory usage. Moreover, many
MATLAB implementations, done unfortunately by
people with insufficient numerical expertise, are un-
satisfactory with respect to requirements as general-
ity, numerical reliability, accuracy.
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