MB03LF

Eigenvalues and right deflating subspace of a real skew-Hamiltonian/Hamiltonian pencil in factored form

[Specification] [Arguments] [Method] [References] [Comments] [Example]

Purpose

  To compute the relevant eigenvalues of a real N-by-N skew-
  Hamiltonian/Hamiltonian pencil aS - bH, with

                                (  B  F  )      (  0  I  )
    S = T Z = J Z' J' Z and H = (        ), J = (        ),      (1)
                                (  G -B' )      ( -I  0  )

  where the notation M' denotes the transpose of the matrix M.
  Optionally, if COMPQ = 'C', an orthogonal basis of the right
  deflating subspace of aS - bH corresponding to the eigenvalues
  with strictly negative real part is computed. Optionally, if
  COMPU = 'C', an orthonormal basis of the companion subspace,
  range(P_U) [1], which corresponds to the eigenvalues with strictly
  negative real part, is computed.

Specification
      SUBROUTINE MB03LF( COMPQ, COMPU, ORTH, N, Z, LDZ, B, LDB, FG,
     $                   LDFG, NEIG, Q, LDQ, U, LDU, ALPHAR, ALPHAI,
     $                   BETA, IWORK, LIWORK, DWORK, LDWORK, BWORK,
     $                   IWARN, INFO )
C     .. Scalar Arguments ..
      CHARACTER          COMPQ, COMPU, ORTH
      INTEGER            INFO, IWARN, LDB, LDFG, LDQ, LDU, LDWORK, LDZ,
     $                   LIWORK, N, NEIG
C     .. Array Arguments ..
      LOGICAL            BWORK( * )
      INTEGER            IWORK( * )
      DOUBLE PRECISION   ALPHAI( * ), ALPHAR( * ), B( LDB, * ),
     $                   BETA( * ), DWORK( * ), FG( LDFG, * ),
     $                   Q( LDQ, * ), U( LDU, * ), Z( LDZ, * )

Arguments

Mode Parameters

  COMPQ   CHARACTER*1
          Specifies whether to compute the right deflating subspace
          corresponding to the eigenvalues of aS - bH with strictly
          negative real part.
          = 'N':  do not compute the deflating subspace;
          = 'C':  compute the deflating subspace and store it in the
                  leading subarray of Q.

  COMPU   CHARACTER*1
          Specifies whether to compute the companion subspace
          corresponding to the eigenvalues of aS - bH with strictly
          negative real part.
          = 'N': do not compute the companion subspace;
          = 'C': compute the companion subspace and store it in the
                 leading subarray of U.

  ORTH    CHARACTER*1
          If COMPQ = 'C' and/or COMPU = 'C', specifies the technique
          for computing the orthogonal basis of the deflating
          subspace, and/or of the companion subspace, as follows:
          = 'P':  QR factorization with column pivoting;
          = 'S':  singular value decomposition.
          If COMPQ = 'N' and COMPU = 'N', the ORTH value is not
          used.

Input/Output Parameters
  N       (input) INTEGER
          The order of the pencil aS - bH.  N >= 0, even.

  Z       (input/output) DOUBLE PRECISION array, dimension (LDZ, N)
          On entry, the leading N-by-N part of this array must
          contain the non-trivial factor Z in the factorization
          S = J Z' J' Z of the skew-Hamiltonian matrix S.
          On exit, if COMPQ = 'C' or COMPU = 'C', the leading
          N-by-N part of this array contains the transformed upper
                            ~
          triangular matrix Z11 (see METHOD), after moving the
          eigenvalues with strictly negative real part to the top
          of the pencil (3). The strictly lower triangular part is
          not zeroed.
          If COMPQ = 'N' and COMPU = 'N', the leading N-by-N part of
          this array contains the matrix Z obtained by the SLICOT
          Library routine MB04AD just before the application of the
          periodic QZ algorithm. The elements of the (2,1) block,
          i.e., in the rows N/2+1 to N and in the columns 1 to N/2
          are not set to zero, but are unchanged on exit.

  LDZ     INTEGER
          The leading dimension of the array Z.  LDZ >= MAX(1, N).

  B       (input) DOUBLE PRECISION array, dimension (LDB, N/2)
          On entry, the leading N/2-by-N/2 part of this array must
          contain the matrix B.

  LDB     INTEGER
          The leading dimension of the array B.  LDB >= MAX(1, N/2).

  FG      (input) DOUBLE PRECISION array, dimension (LDFG, N/2+1)
          On entry, the leading N/2-by-N/2 lower triangular part of
          this array must contain the lower triangular part of the
          symmetric matrix G, and the N/2-by-N/2 upper triangular
          part of the submatrix in the columns 2 to N/2+1 of this
          array must contain the upper triangular part of the
          symmetric matrix F.

  LDFG    INTEGER
          The leading dimension of the array FG.
          LDFG >= MAX(1, N/2).

  NEIG    (output) INTEGER
          If COMPQ = 'C' or COMPU = 'C', the number of eigenvalues
          in aS - bH with strictly negative real part.

  Q       (output) DOUBLE PRECISION array, dimension (LDQ, 2*N)
          On exit, if COMPQ = 'C', the leading N-by-NEIG part of
          this array contains an orthogonal basis of the right
          deflating subspace corresponding to the eigenvalues of
          aS - bH with strictly negative real part. The remaining
          part of this array is used as workspace.
          If COMPQ = 'N', this array is not referenced.

  LDQ     INTEGER
          The leading dimension of the array Q.
          LDQ >= 1,           if COMPQ = 'N';
          LDQ >= MAX(1, 2*N), if COMPQ = 'C'.

  U       (output) DOUBLE PRECISION array, dimension (LDU, 2*N)
          On exit, if COMPU = 'C', the leading N-by-NEIG part of
          this array contains an orthogonal basis of the companion
          subspace corresponding to the eigenvalues of aS - bH with
          strictly negative real part. The remaining part of this
          array is used as workspace.
          If COMPU = 'N', this array is not referenced.

  LDU     INTEGER
          The leading dimension of the array U.
          LDU >= 1,         if COMPU = 'N';
          LDU >= MAX(1, N), if COMPU = 'C'.

  ALPHAR  (output) DOUBLE PRECISION array, dimension (N/2)
          The real parts of each scalar alpha defining an eigenvalue
          of the pencil aS - bH.

  ALPHAI  (output) DOUBLE PRECISION array, dimension (N/2)
          The imaginary parts of each scalar alpha defining an
          eigenvalue of the pencil aS - bH.
          If ALPHAI(j) is zero, then the j-th eigenvalue is real.

  BETA    (output) DOUBLE PRECISION array, dimension (N/2)
          The scalars beta that define the eigenvalues of the pencil
          aS - bH.
          If INFO = 0, the quantities alpha = (ALPHAR(j),ALPHAI(j)),
          and beta = BETA(j) represent together the j-th eigenvalue
          of the pencil aS - bH, in the form lambda = alpha/beta.
          Since lambda may overflow, the ratios should not, in
          general, be computed. Due to the skew-Hamiltonian/
          Hamiltonian structure of the pencil, only half of the
          spectrum is saved in ALPHAR, ALPHAI and BETA.
          Specifically, only eigenvalues with imaginary parts
          greater than or equal to zero are stored; their conjugate
          eigenvalues are not stored. If imaginary parts are zero
          (i.e., for real eigenvalues), only positive eigenvalues
          are stored. The remaining eigenvalues have opposite signs.
          If IWARN = 1, one or more BETA(j) is not representable,
          and the eigenvalues are returned as described below (see
          the description of the argument IWARN).

Workspace
  IWORK   INTEGER array, dimension (LIWORK)
          On exit, if INFO = -20, IWORK(1) returns the minimum value
          of LIWORK.
          On exit, if INFO = 0 and IWARN = 1, then IWORK(1), ...,
          IWORK(N/2) return the scaling parameters for the
          eigenvalues of the pencil aS - bH (see IWARN).

  LIWORK  INTEGER
          The dimension of the array IWORK.
          LIWORK >= N + 18,      if COMPQ = 'N' and COMPU = 'N';
          LIWORK >= MAX( N + 18, N/2 + 48, 5*N/2 + 1 ), otherwise.

  DWORK   DOUBLE PRECISION array, dimension (LDWORK)
          On exit, if INFO = 0, DWORK(1) returns the optimal value
          of LDWORK, and DWORK(2) returns the machine base, b.
          On exit, if INFO = -22, DWORK(1) returns the minimum value
          of LDWORK.

  LDWORK  INTEGER
          The dimension of the array DWORK.
          LDWORK >= c*N**2 + max( N*N + MAX( N/2+252, 432 ),
                                  MAX(8*N+48,171) ), where
                    c = a,   if COMPU = 'N',
                    c = a+1, if COMPU = 'C', and
                    a = 6,   if COMPQ = 'N',
                    a = 9,   if COMPQ = 'C'.
          For good performance LDWORK should be generally larger.

          If LDWORK = -1  a workspace query is assumed; the
          routine only calculates the optimal size of the DWORK
          array, returns this value as the first entry of the DWORK
          array, and no error message is issued by XERBLA.

  BWORK   LOGICAL array, dimension (N/2)

Warning Indicator
  IWARN   INTEGER
          = 0: no warning;
          = 1: the eigenvalues will under- or overflow if evaluated;
               therefore, the j-th eigenvalue is represented by
               the quantities alpha = (ALPHAR(j),ALPHAI(j)),
               beta = BETA(j), and gamma = IWORK(j) in the form
               lambda = (alpha/beta) * b**gamma, where b is the
               machine base (often 2.0), returned in DWORK(2).

Error Indicator
  INFO    INTEGER
          = 0: succesful exit;
          < 0: if INFO = -i, the i-th argument had an illegal value;
          = 1: periodic QZ iteration failed in the SLICOT Library
               routines MB04AD, MB04CD or MB03BB (QZ iteration did
               not converge or computation of the shifts failed);
          = 2: standard QZ iteration failed in the SLICOT Library
               routines MB04CD or MB03CD (called by MB03ID);
          = 3: a numerically singular matrix was found in the SLICOT
               Library routine MB03GD (called by MB03ID);
          = 4: the singular value decomposition failed in the LAPACK
               routine DGESVD (for ORTH = 'S').

Method
  First, the decompositions of S and H are computed via orthogonal
  matrices Q1 and Q2 and orthogonal symplectic matrices U1 and U2,
  such that

                                ( T11  T12 )
    Q1' T U1 = Q1' J Z' J' U1 = (          ),
                                (  0   T22 )

               ( Z11  Z12 )
    U2' Z Q2 = (          ),                                     (2)
               (  0   Z22 )

               ( H11  H12 )
    Q1' H Q2 = (          ),
               (  0   H22 )

  where T11, T22', Z11, Z22', H11 are upper triangular and H22' is
  upper quasi-triangular.

  Then, orthogonal matrices Q3, Q4 and U3 are found, for the
  matrices

    ~     ( T22'  0  )  ~     ( T11'  0  )  ~   (   0   H11 )
    Z11 = (          ), Z22 = (          ), H = (           ),
          (  0   Z11 )        (  0   Z22 )      ( -H22'  0  )

            ~          ~       ~          ~
  such that Z11 := U3' Z11 Q4, Z22 := U3' Z22 Q3 are upper
                 ~          ~
  triangular and H11 := Q3' H Q4 is upper quasi-triangular. The
  following matrices are computed:

    ~          ( -T12'  0  )        ~          (  0   H12 )
    Z12 := U3' (           ) Q3 and H12 := Q3' (          ) Q3.
               (  0    Z12 )                   ( H12'  0  )

  Then, an orthogonal matrix Q and an orthogonal symplectic matrix U
  are found such that the eigenvalues with strictly negative real
  parts of the pencil

          ~    ~          ~    ~           ~    ~
        ( Z11  Z12 )'   ( Z11  Z12 )     ( H11  H12  )
    a J (      ~   ) J' (      ~   ) - b (      ~    )           (3)
        (  0   Z22 )    (  0   Z22 )     (  0  -H11' )

  are moved to the top of this pencil.

  Finally, an orthogonal basis of the right deflating subspace
  and an orthogonal basis of the companion subspace corresponding to
  the eigenvalues with strictly negative real part are computed.
  See also page 11 in [1] for more details.

References
  [1] Benner, P., Byers, R., Losse, P., Mehrmann, V. and Xu, H.
      Numerical Solution of Real Skew-Hamiltonian/Hamiltonian
      Eigenproblems.
      Tech. Rep., Technical University Chemnitz, Germany,
      Nov. 2007.

Numerical Aspects
                                                            3
  The algorithm is numerically backward stable and needs O(N )
  floating point operations.

Further Comments
  This routine does not perform any scaling of the matrices. Scaling
  might sometimes be useful, and it should be done externally.

Example

Program Text

*     MB03LF EXAMPLE PROGRAM TEXT
*     Copyright (c) 2002-2017 NICONET e.V.
*
*     .. Parameters ..
      INTEGER            NIN, NOUT
      PARAMETER          ( NIN = 5, NOUT = 6 )
      INTEGER            NMAX
      PARAMETER          ( NMAX = 50 )
      INTEGER            LDB, LDFG, LDQ, LDU, LDWORK, LDZ, LIWORK
      PARAMETER          ( LDB = NMAX/2, LDFG = NMAX/2, LDQ = 2*NMAX,
     $                     LDU = NMAX,   LDZ  = NMAX,
     $                     LDWORK = 10*NMAX*NMAX +
     $                              MAX( NMAX*NMAX +
     $                                   MAX( NMAX/2 + 252, 432 ),
     $                                   MAX( 8*NMAX +  48, 171 ) ),
     $                     LIWORK = MAX( NMAX + 18, NMAX/2 + 48,
     $                                   5*NMAX/2 + 1 ) )
*
*     .. Local Scalars ..
      CHARACTER          COMPQ, COMPU, ORTH
      INTEGER            I, INFO, IWARN, J, M, N, NEIG
*
*     .. Local Arrays ..
      LOGICAL            BWORK( NMAX/2 )
      INTEGER            IWORK( LIWORK )
      DOUBLE PRECISION   ALPHAI( NMAX/2 ),  ALPHAR( NMAX/2 ),
     $                   B( LDB, NMAX/2 ),    BETA( NMAX/2 ),
     $                   DWORK( LDWORK ), FG( LDFG, NMAX/2+1 ),
     $                   Q( LDQ, 2*NMAX ),  U( LDU, 2*NMAX ),
     $                   Z( LDZ, NMAX )
*
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*
*     .. External Subroutines ..
      EXTERNAL           MB03LF
*
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MOD
*
*     .. Executable Statements ..
*
      WRITE( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read in the data.
      READ( NIN, FMT = * )
      READ( NIN, FMT = * ) COMPQ, COMPU, ORTH, N
      IF( N.LT.0 .OR. N.GT.NMAX .OR. MOD( N, 2 ).NE.0 ) THEN
         WRITE( NOUT, FMT = 99998 ) N
      ELSE
         M = N/2
         READ( NIN, FMT = * ) ( (  Z( I, J ), J = 1, N   ), I = 1, N )
         READ( NIN, FMT = * ) ( (  B( I, J ), J = 1, M   ), I = 1, M )
         READ( NIN, FMT = * ) ( ( FG( I, J ), J = 1, M+1 ), I = 1, M )
*        Compute the eigenvalues and orthogonal bases of the right
*        deflating subspace and companion subspace of a real
*        skew-Hamiltonian/Hamiltonian pencil, corresponding to the
*        eigenvalues with strictly negative real part.
         CALL MB03LF( COMPQ, COMPU, ORTH, N, Z, LDZ, B, LDB, FG, LDFG,
     $                NEIG, Q, LDQ, U, LDU, ALPHAR, ALPHAI, BETA, IWORK,
     $                LIWORK, DWORK, LDWORK, BWORK, IWARN, INFO )
*
         IF( INFO.NE.0 ) THEN
            WRITE( NOUT, FMT = 99997 ) INFO
         ELSE
            WRITE( NOUT, FMT = 99996 )
            DO 10 I = 1, N
               WRITE( NOUT, FMT = 99995 ) ( Z( I, J ), J = 1, N )
   10       CONTINUE
            WRITE( NOUT, FMT = 99994 )
            WRITE( NOUT, FMT = 99995 ) ( ALPHAR( I ), I = 1, M )
            WRITE( NOUT, FMT = 99993 )
            WRITE( NOUT, FMT = 99995 ) ( ALPHAI( I ), I = 1, M )
            WRITE( NOUT, FMT = 99992 )
            WRITE( NOUT, FMT = 99995 ) (   BETA( I ), I = 1, M )
            IF( LSAME( COMPQ, 'C' ) .AND. NEIG.GT.0 ) THEN
               WRITE( NOUT, FMT = 99991 )
               DO 20 I = 1, N
                  WRITE( NOUT, FMT = 99995 ) ( Q( I, J ), J = 1, NEIG )
   20          CONTINUE
            END IF
            IF( LSAME( COMPU, 'C' ) .AND. NEIG.GT.0 ) THEN
               WRITE( NOUT, FMT = 99990 )
               DO 30 I = 1, N
                  WRITE( NOUT, FMT = 99995 ) ( U( I, J ), J = 1, NEIG )
   30          CONTINUE
            END IF
            IF( LSAME( COMPQ, 'C' ) .OR. LSAME( COMPU, 'C' ) )
     $         WRITE( NOUT, FMT = 99989 ) NEIG
         END IF
      END IF
      STOP
*
99999 FORMAT ( 'MB03LF EXAMPLE PROGRAM RESULTS', 1X )
99998 FORMAT ( 'N is out of range.', /, 'N = ', I5 )
99997 FORMAT ( 'INFO on exit from MB03LF = ', I2 )
99996 FORMAT (/'The matrix Z on exit is ' )
99995 FORMAT ( 50( 1X, F8.4 ) )
99994 FORMAT (/'The vector ALPHAR is ' )
99993 FORMAT (/'The vector ALPHAI is ' )
99992 FORMAT (/'The vector BETA is ' )
99991 FORMAT (/'The deflating subspace corresponding to the ',
     $         'eigenvalues with negative real part is ' )
99990 FORMAT (/'The companion subspace corresponding to the ',
     $         'eigenvalues with negative real part is ' )
99989 FORMAT (/'The number of eigenvalues in the initial pencil with ',
     $         'negative real part is ', I2 )
      END
Program Data
MB03LF EXAMPLE PROGRAM DATA
   C   C   P   8
   3.1472    4.5751   -0.7824    1.7874   -2.2308   -0.6126    2.0936    4.5974
   4.0579    4.6489    4.1574    2.5774   -4.5383   -1.1844    2.5469   -1.5961
  -3.7301   -3.4239    2.9221    2.4313   -4.0287    2.6552   -2.2397    0.8527
   4.1338    4.7059    4.5949   -1.0777    3.2346    2.9520    1.7970   -2.7619
   1.3236    4.5717    1.5574    1.5548    1.9483   -3.1313    1.5510    2.5127
  -4.0246   -0.1462   -4.6429   -3.2881   -1.8290   -0.1024   -3.3739   -2.4490
  -2.2150    3.0028    3.4913    2.0605    4.5022   -0.5441   -3.8100    0.0596
   0.4688   -3.5811    4.3399   -4.6817   -4.6555    1.4631   -0.0164    1.9908
   0.6882  -3.3782  -3.3435   1.8921
  -0.3061   2.9428   1.0198   2.4815
  -4.8810  -1.8878  -2.3703  -0.4946
  -1.6288   0.2853   1.5408  -4.1618
  -2.4013  -2.7102   0.3834  -3.9335   3.1730
  -3.1815  -2.3620   4.9613   4.6190   3.6869
   3.6929   0.7970   0.4986  -4.9537  -4.1556
   3.5303   1.2206  -1.4905   0.1325  -1.0022

Program Results
MB03LF EXAMPLE PROGRAM RESULTS

The matrix Z on exit is 
   4.4128   0.1059  -1.8709   1.2963  -4.3448   2.7633   2.3580   2.1931
   0.0000  10.0337  -1.9797   1.8052  -1.0112   1.1335   1.2374   0.3107
   0.0000   0.0000   8.9476   1.8523  -1.8578  -0.5807  -1.4157   1.3007
   0.0000   0.0000   0.0000  -7.0889  -2.1193  -2.1634  -2.4393   0.1148
   0.0765   1.0139   0.0000  -1.5390  -8.3187  -5.0172   0.7738  -2.8626
   1.1884  -0.9225   0.0000   0.2905   0.0000   6.4090   2.1994  -2.5933
  -0.5931   0.1981   0.0000  -0.5280   0.0000   0.0000   4.7155   2.3817
   1.8591  -1.8416   0.0000  -0.0807   0.0000   0.0000   0.0000  -5.3153

The vector ALPHAR is 
   0.7353   0.0000   0.5168  -0.5168

The vector ALPHAI is 
   0.0000   0.7190   0.5610   0.5610

The vector BETA is 
   2.0000   2.8284  11.3137  11.3137

The deflating subspace corresponding to the eigenvalues with negative real part is 
  -0.2509   0.3670   0.0416
  -0.3267  -0.7968  -0.1019
   0.0263   0.0338  -0.5795
  -0.0139  -0.0491  -0.5217
  -0.4637   0.2992  -0.4403
  -0.1345   0.3071  -0.0917
  -0.1364   0.2013   0.3447
  -0.7601  -0.0495   0.2426

The companion subspace corresponding to the eigenvalues with negative real part is 
  -0.3219   0.6590   0.1693
  -0.5216  -0.1829  -0.0689
  -0.0413  -0.4664  -0.1359
   0.1310  -0.1702   0.4543
  -0.3598   0.2660   0.3355
  -0.5082  -0.0512  -0.6035
  -0.3582  -0.4513   0.4649
   0.2991   0.0932  -0.2207

The number of eigenvalues in the initial pencil with negative real part is  3

Return to index