MC03ND

Minimal polynomial basis for the right nullspace of a polynomial matrix

[Specification] [Arguments] [Method] [References] [Comments] [Example]

Purpose

  To compute the coefficients of a minimal polynomial basis
                                              DK
      K(s) = K(0) + K(1) * s + ... + K(DK) * s

  for the right nullspace of the MP-by-NP polynomial matrix of
  degree DP, given by
                                              DP
      P(s) = P(0) + P(1) * s + ... + P(DP) * s  ,

  which corresponds to solving the polynomial matrix equation
  P(s) * K(s) = 0.

Specification
      SUBROUTINE MC03ND( MP, NP, DP, P, LDP1, LDP2, DK, GAM, NULLSP,
     $                   LDNULL, KER, LDKER1, LDKER2, TOL, IWORK, DWORK,
     $                   LDWORK, INFO )
C     .. Scalar Arguments ..
      INTEGER           DK, DP, INFO, LDKER1, LDKER2, LDNULL, LDP1,
     $                  LDP2, LDWORK, MP, NP
      DOUBLE PRECISION  TOL
C     .. Array Arguments ..
      INTEGER           GAM(*), IWORK(*)
      DOUBLE PRECISION  DWORK(*), KER(LDKER1,LDKER2,*),
     $                  NULLSP(LDNULL,*), P(LDP1,LDP2,*)

Arguments

Input/Output Parameters

  MP      (input) INTEGER
          The number of rows of the polynomial matrix P(s).
          MP >= 0.

  NP      (input) INTEGER
          The number of columns of the polynomial matrix P(s).
          NP >= 0.

  DP      (input) INTEGER
          The degree of the polynomial matrix P(s).  DP >= 1.

  P       (input) DOUBLE PRECISION array, dimension (LDP1,LDP2,DP+1)
          The leading MP-by-NP-by-(DP+1) part of this array must
          contain the coefficients of the polynomial matrix P(s).
          Specifically, P(i,j,k) must contain the (i,j)-th element
          of P(k-1), which is the cofficient of s**(k-1) of P(s),
          where i = 1,2,...,MP, j = 1,2,...,NP and k = 1,2,...,DP+1.

  LDP1    INTEGER
          The leading dimension of array P.  LDP1 >= MAX(1,MP).

  LDP2    INTEGER
          The second dimension of array P.   LDP2 >= MAX(1,NP).

  DK      (output) INTEGER
          The degree of the minimal polynomial basis K(s) for the
          right nullspace of P(s) unless DK = -1, in which case
          there is no right nullspace.

  GAM     (output) INTEGER array, dimension (DP*MP+1)
          The leading (DK+1) elements of this array contain
          information about the ordering of the right nullspace
          vectors stored in array NULLSP.

  NULLSP  (output) DOUBLE PRECISION array, dimension
          (LDNULL,(DP*MP+1)*NP)
          The leading NP-by-SUM(i*GAM(i)) part of this array
          contains the right nullspace vectors of P(s) in condensed
          form (as defined in METHOD), where i = 1,2,...,DK+1.

  LDNULL  INTEGER
          The leading dimension of array NULLSP.
          LDNULL >= MAX(1,NP).

  KER     (output) DOUBLE PRECISION array, dimension
          (LDKER1,LDKER2,DP*MP+1)
          The leading NP-by-nk-by-(DK+1) part of this array contains
          the coefficients of the minimal polynomial basis K(s),
          where nk = SUM(GAM(i)) and i = 1,2,...,DK+1. Specifically,
          KER(i,j,m) contains the (i,j)-th element of K(m-1), which
          is the coefficient of s**(m-1) of K(s), where i = 1,2,...,
          NP, j = 1,2,...,nk and m = 1,2,...,DK+1.

  LDKER1  INTEGER
          The leading dimension of array KER.  LDKER1 >= MAX(1,NP).

  LDKER2  INTEGER
          The second dimension of array KER.   LDKER2 >= MAX(1,NP).

Tolerances
  TOL     DOUBLE PRECISION
          A tolerance below which matrix elements are considered
          to be zero. If the user sets TOL to be less than
          10 * EPS * MAX( ||A|| , ||E|| ), then the tolerance is
                               F       F
          taken as 10 * EPS * MAX( ||A|| , ||E|| ), where EPS is the
                                        F       F
          machine precision (see LAPACK Library Routine DLAMCH) and
          A and E are matrices (as defined in METHOD).

Workspace
  IWORK   INTEGER array, dimension (m+2*MAX(n,m+1)+n),
          where m = DP*MP and n = (DP-1)*MP + NP.

  DWORK   DOUBLE PRECISION array, dimension (LDWORK)

  LDWORK  The length of the array DWORK.
          LDWORK >= m*n*n + 2*m*n + 2*n*n.

Error Indicator
  INFO    INTEGER
          = 0:  successful exit;
          < 0:  if INFO = -i, the i-th argument had an illegal
                value.
          > 0:  if incorrect rank decisions were taken during the
                computations. This failure is not likely to occur.
                The possible values are:
                  k, 1 <= k <= DK+1, the k-th diagonal submatrix had
                        not a full row rank;
                  DK+2, if incorrect dimensions of a full column
                        rank submatrix;
                  DK+3, if incorrect dimensions of a full row rank
                        submatrix.

Method
  The computation of the right nullspace of the MP-by-NP polynomial
  matrix P(s) of degree DP given by
                                               DP-1            DP
     P(s) = P(0) + P(1) * s + ... + P(DP-1) * s     + P(DP) * s

  is performed via the pencil s*E - A, associated with P(s), where

         | I              |           | 0         -P(DP) |
         |   .            |           | I .          .   |
     A = |     .          |  and  E = |   . .        .   |.      (1)
         |       .        |           |     . 0      .   |
         |         I      |           |       I 0 -P(2)  |
         |           P(0) |           |         I -P(1)  |

  The pencil s*E - A is transformed by unitary matrices Q and Z such
  that

                  | sE(eps)-A(eps) |        X       |      X     |
                  |----------------|----------------|------------|
                  |        0       | sE(inf)-A(inf) |      X     |
     Q'(s*E-A)Z = |=================================|============|.
                  |                                 |            |
                  |                0                | sE(r)-A(r) |

  Since s*E(inf)-A(inf) and s*E(r)-A(r) have full column rank, the
  minimal polynomial basis for the right nullspace of Q'(s*E-A)Z
  (and consequently the basis for the right nullspace of s*E - A) is
  completely determined by s*E(eps)-A(eps).

  Let Veps(s) be a minimal polynomial basis for the right nullspace
  of s*E(eps)-A(eps). Then

                | Veps(s) |
     V(s) = Z * |---------|
                |    0    |

  is a minimal polynomial basis for the right nullspace of s*E - A.
  From the structure of s*E - A it can be shown that if V(s) is
  partitioned as

            | Vo(s) | (DP-1)*MP
     V(s) = |------ |
            | Ve(s) | NP

  then the columns of Ve(s) form a minimal polynomial basis for the
  right nullspace of P(s).

  The vectors of Ve(s) are computed and stored in array NULLSP in
  the following condensed form:

     ||      ||      |      ||      |      |      ||      |     |
     || U1,0 || U2,0 | U2,1 || U3,0 | U3,1 | U3,2 || U4,0 | ... |,
     ||      ||      |      ||      |      |      ||      |     |

  where Ui,j is an NP-by-GAM(i) matrix which contains the i-th block
  of columns of K(j), the j-th coefficient of the polynomial matrix
  representation for the right nullspace
                                               DK
     K(s) = K(0) + K(1) * s + . . . + K(DK) * s  .

  The coefficients K(0), K(1), ..., K(DK) are NP-by-nk matrices
  given by

     K(0)  = | U1,0 | U2,0 | U3,0 | . . .          | U(DK+1,0) |

     K(1)  = |  0   | U2,1 | U3,1 | . . .          | U(DK+1,1) |

     K(2)  = |  0   |  0   | U3,2 | . . .          | U(DK+1,2) |

       .     .     .     .     .     .     .     .     .     .

     K(DK) = |  0   |  0   |  0   | . . .    |  0  | U(DK+1,DK)|.

  Note that the degree of K(s) satisfies the inequality DK <=
  DP * MIN(MP,NP) and that the dimension of K(s) satisfies the
  inequality (NP-MP) <= nk <= NP.

References
  [1] Beelen, Th.G.J.
      New Algorithms for Computing the Kronecker structure of a
      Pencil with Applications to Systems and Control Theory.
      Ph.D.Thesis, Eindhoven University of Technology, 1987.

  [2] Van Den Hurk, G.J.H.H.
      New Algorithms for Solving Polynomial Matrix Problems.
      Master's Thesis, Eindhoven University of Technology, 1987.

Numerical Aspects
  The algorithm used by the routine involves the construction of a
  special block echelon form with pivots considered to be non-zero
  when they are larger than TOL. These pivots are then inverted in
  order to construct the columns of the kernel of the polynomial
  matrix. If TOL is chosen to be too small then these inversions may
  be sensitive whereas increasing TOL will make the inversions more
  robust but will affect the block echelon form (and hence the
  column degrees of the polynomial kernel). Furthermore, if the
  elements of the computed polynomial kernel are large relative to
  the polynomial matrix, then the user should consider trying
  several values of TOL.

Further Comments
  It also possible to compute a minimal polynomial basis for the
  right nullspace of a pencil, since a pencil is a polynomial matrix
  of degree 1. Thus for the pencil (s*E - A), the required input is
  P(1)  = E and P(0) = -A.

  The routine can also be used to compute a minimal polynomial
  basis for the left nullspace of a polynomial matrix by simply
  transposing P(s).

Example

Program Text

*     MC03ND EXAMPLE PROGRAM TEXT
*     Copyright (c) 2002-2017 NICONET e.V.
*
*     .. Parameters ..
      INTEGER          NIN, NOUT
      PARAMETER        ( NIN = 5, NOUT = 6 )
      INTEGER          DPMAX, MPMAX, NPMAX
*     PARAMETER        ( DPMAX = 5, MPMAX = 5, NPMAX = 5 )
      PARAMETER        ( DPMAX = 2, MPMAX = 5, NPMAX = 4 )
      INTEGER          LDP1, LDP2, LDNULL, LDKER1, LDKER2
      PARAMETER        ( LDP1 = MPMAX, LDP2 = NPMAX, LDNULL = NPMAX,
     $                   LDKER1 = NPMAX, LDKER2 = NPMAX )
      INTEGER          M, N
      PARAMETER        ( M = DPMAX*MPMAX, N = ( DPMAX-1 )*MPMAX+NPMAX )
      INTEGER          LIWORK, LDWORK
*     PARAMETER        ( LIWORK = 3*( N+M )+2,
      PARAMETER        ( LIWORK = M+2*MAX( N,M+1 )+N,
     $                   LDWORK = M*N**2+2*M*N+2*N**2 )
*     .. Local Scalars ..
      DOUBLE PRECISION TOL
      INTEGER          DK, DP, I, INFO, J, K, M1, MP, NK, NP
*     .. Local Arrays ..
      DOUBLE PRECISION DWORK(LDWORK), KER(LDKER1,LDKER2,M+1),
     $                 NULLSP(LDNULL,(M+1)*NPMAX), P(LDP1,LDP2,DPMAX+1)
      INTEGER          GAM(M+1), IWORK(LIWORK)
*     .. External Subroutines ..
      EXTERNAL         MC03ND
*     .. Intrinsic Functions ..
      INTRINSIC        MAX
*     .. Executable Statements ..
*
      WRITE ( NOUT, FMT = 99999 )
*     Skip the heading in the data file and read the data.
      READ ( NIN, FMT = '()' )
      READ ( NIN, FMT = * ) MP, NP, DP, TOL
      IF ( MP.LT.0 .OR. MP.GT.MPMAX ) THEN
         WRITE ( NOUT, FMT = 99990 ) MP
      ELSE IF ( NP.LT.0 .OR. NP.GT.NPMAX ) THEN
         WRITE ( NOUT, FMT = 99991 ) NP
      ELSE IF ( DP.LE.0 .OR. DP.GT.DPMAX ) THEN
         WRITE ( NOUT, FMT = 99992 ) DP
      ELSE
         DO 40 K = 1, DP + 1
            DO 20 I = 1, MP
               READ ( NIN, FMT = * ) ( P(I,J,K), J = 1,NP )
   20       CONTINUE
   40    CONTINUE
*        Compute a minimal polynomial basis K(s) of the given P(s).
         CALL MC03ND( MP, NP, DP, P, LDP1, LDP2, DK, GAM, NULLSP,
     $                LDNULL, KER, LDKER1, LDKER2, TOL, IWORK, DWORK,
     $                LDWORK, INFO )
*
         IF ( INFO.NE.0 ) THEN
            WRITE ( NOUT, FMT = 99998 ) INFO
         ELSE IF ( DK.LT.0 ) THEN
            WRITE ( NOUT, FMT = 99997 )
         ELSE
            NK = 0
            M1 = 0
            DO 60 I = 1, DK + 1
               NK = NK + GAM(I)
               M1 = M1 + GAM(I)*I
   60       CONTINUE
            WRITE ( NOUT, FMT = 99996 )
            DO 80 I = 1, NP
               WRITE ( NOUT, FMT = 99995 ) ( NULLSP(I,J), J = 1,M1 )
   80       CONTINUE
            WRITE ( NOUT, FMT = 99994 ) DK, ( I-1, I = 1,DK+1 )
            DO 120 I = 1, NP
               DO 100 J = 1, NK
                  WRITE ( NOUT, FMT = 99993 )
     $                  I, J, ( KER(I,J,K), K = 1,DK+1 )
  100          CONTINUE
  120       CONTINUE
         END IF
      END IF
      STOP
*
99999 FORMAT (' MC03ND EXAMPLE PROGRAM RESULTS',/1X)
99998 FORMAT (' INFO on exit from MC03ND = ',I2)
99997 FORMAT (' The polynomial matrix P(s) has no right nullspace')
99996 FORMAT (' The right nullspace vectors of P(s) are ')
99995 FORMAT (20(1X,F8.4))
99994 FORMAT (/' The minimal polynomial basis K(s) (of degree ',I2,') ',
     $       'for the right nullspace is ',//' power of s         ',
     $       20I8)
99993 FORMAT (/' element (',I2,',',I2,') is ',20(1X,F7.2))
99992 FORMAT (/' DP is out of range.',/' DP = ',I5)
99991 FORMAT (/' NP is out of range.',/' NP = ',I5)
99990 FORMAT (/' MP is out of range.',/' MP = ',I5)
      END
Program Data
 MC03ND EXAMPLE PROGRAM DATA
   5     4     2     0.0
   2.0   2.0   0.0   3.0
   0.0   4.0   0.0   6.0
   8.0   8.0   0.0  12.0
   0.0   0.0   0.0   0.0
   2.0   2.0   0.0   3.0
   1.0   0.0   1.0   0.0
   0.0   0.0   2.0   0.0
   4.0   0.0   4.0   0.0
   2.0   2.0   0.0   3.0
   3.0   2.0   1.0   3.0
   0.0   0.0   0.0   0.0
   1.0   0.0   0.0   0.0
   0.0   0.0   0.0   0.0
   1.0   0.0   1.0   0.0
   1.0   0.0   1.0   0.0
Program Results
 MC03ND EXAMPLE PROGRAM RESULTS

 The right nullspace vectors of P(s) are 
   0.0000   0.0000   0.0000
  -0.8321   0.0000   0.1538
   0.0000  -1.0000   0.0000
   0.5547   0.0000   0.2308

 The minimal polynomial basis K(s) (of degree  1) for the right nullspace is 

 power of s                0       1

 element ( 1, 1) is     0.00    0.00

 element ( 1, 2) is     0.00    0.00

 element ( 2, 1) is    -0.83    0.00

 element ( 2, 2) is     0.00    0.15

 element ( 3, 1) is     0.00    0.00

 element ( 3, 2) is    -1.00    0.00

 element ( 4, 1) is     0.55    0.00

 element ( 4, 2) is     0.00    0.23

Return to index