
8 SLICOT Controls Microwaves { a Case Study

Motivation

Recent technological advances in microwave household appliances have created the possibility
of a more re�ned control of the heating process in combination ovens. This includes the control
of both a microwave heating source and a forced convection (air) heating source. Optimal
control of a combination oven will give a higher quality end-product with a more uniform
temperature distribution and, hence, a better cook-quality. This short article reports on the
application of the (recently available) SLICOT reduction routines for calculation of an optimal
control history for a microwave combination oven. We present a simple, �nite horizon linear
quadratic regulator solution to the heating problem, which was calculated using the reduced
set of model equations. The example involves the calculation of an optimal heating pro�le
for a container of mashed potato. The original (high dimensional) system model was reduced
using the SLICOT routine AB09CD, which includes optimal Hankel norm approximation
with square-root balancing. This routine allows a substantial reduction of computation time
for the LQ design. The reduction routines were found to be more e�cient than Matlab

routines. Recent progress is reported.

Fourier's Law of Heat Di�usion

A simpli�ed model of heat conduction can be described by Fourier's heat equation which,
in Cartesian coordinates r = (x; y; z), reads

�(r)c(r)
@T (r; t)

@t
= ~rfk(r) � ~rT (r; t)g +Q(r; t) (3)

where T (r; t) is the temperature �eld (oC), Q(r; t) is the heat ux which drives the system
to a desired state or �nal temperature �eld, �(r) is the density of the body to be heated, and
c(r) is the heat capacity. We note that in reality heat conductance and heat conductivity are
temperature dependent and, hence, the above model is only a good approximation of the heat
di�usion process on a restricted temperature domain. Further, note that the heat ux Q(r; t)
in the heat di�usion PDE consists of two heating sources, namely a convection boundary
condition for nodal points ri 2 @
 and internal heating through microwaves for the points
ri 2 
. For boundary points the surface boundary condition expresses the heat transfer from
the air to the object, i.e.

8r 2 @
 : � k(r)
@T (r; t)

@n
= hq(T (r; t)� T1(t)) (4)

where hq is the surface heat transfer coe�cient, n is the (outwards orientated) normal vector
to the surface @
, and T1(t) is the air temperature in the oven cavity.

The temperature �eld T (r; t) is approximated using �nite element (Galerkin) approxima-
tion techniqes which transform the system model to a set of ordinary di�erential equations.
Assuming spatial uniformity of densities, heat capacities, and conductivities, this gives

Cp
dx(t)

dt
+Kx(t) = f(r)

�
P (t)
T1(t)

�
(5)
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with Cp the heat capacitance matrix (N � N), K the conductivity matrix (N � N), f(r)
the heat input vector (N �m), and P (t) and T1(t) are the �-wave power �eld and the air
temperature in the oven cavity respectively. The N nodal temperatures xi(t) are de�ned on a
grid �. The dimension of the input vector (m) equals two in this case. Note that the driving
term on the right hand side of (5) has been separated into a spatial dependent and a temporal
dependent component.

SLICOT Reduction

The above set of ordinary di�erential equations in the nodal temperatures x(t) on a grid
� is, in fact, the starting point for the control analysis. The dimension N of the nodal
temperature vector can be quite large (order of magnitude is several thousands of nodes for a
realistic case study) and the system matrices Cp andK are sparse. Calculation of the optimal,
�nite horizon, linear quadratic regulator for the full system is very laborious and involves too
many equations. Hence, SLICOT's routine AB09CD was used to reduce the original set of
equations (5) to a more workable size, i.e.

_xr(t) = Arxr(t) +Bru(t) (6)

y(tk) = Crxr(tk) (7)

with dim(xr) << dim(x). It was found that the e�ciency of the AB09CD routine outper-
forms similar reduction commands inMatlab, especially for large dimensional problems with
several thousands of nodes. A comparison (expressed in CPU time) was made between a re-
duction usingMatlab's command `ohklmr' and the SLICOT routine AB09CD. It was found
that, for this particular problem, SLICOT performed 18 times faster (41.5 seconds, instead of
750.3 seconds forMatlab's ohklmr). Also, the memory usage for the mashed potato problem
(see below) was approximately a fourth of the size Matlab used to solve the same problem.
In order to �nd an optimal control history, the original quadratic cost function in the nodal
temperatures x(t) was transformed to a cost in the reduced state vector xr and the associated
algebraic Riccati equation in the reduced state was simply swept back to t0.

An Example Case Study

As an example case study the optimal pro�les for a cylindrical container (�gure 3) of
mashed potato will be presented. First, the matrices Cp, K, and the input heating vector
f(r) were calculated with Galerkin �nite element approximation techniques on the basis of the
physical properties of mashed potato5. The microwave power distribution was approximated
using Lambert's law which states that the attenuation of microwave power is exponentially
decreasing in space (see �gure 4 for the microwave distribution on the surface 
1) with an
attenuation factor �. The Lambert approximation is not a very good one for realistic case
studies but it demonstrates the method used here. We are currently working on examples
which include more realistic values for the microwave power distribution, based on (�nite
di�erence) simulations of Maxwell's electrodynamical laws in three dimensions.

The original system for the mashed potato problem involves 441 ordinary di�erential
equations. SLICOT's AB09CD routine reduced this set to 41 states which substantially
reduced the computations involved in a backward sweep of the algebraic Riccati equations for

5These matrices will be available on the SLICOT website.
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Figure 3: Cylindrical container of mashed potato. The simulations in this study involve the
half vertical squared surface 
1.

0

0.005

0.01

0.015

0.02 0

0.005

0.01

0.015

0.020.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Axial co−ordinate [m]

Radius [m]

P
ow

er

Figure 4: Microwave Power Distribution following Lambert's attenuation law.

calculation of the optimal control history fu(t); 0 < t < tfg. It was found that the calculation
of an optimal control history using SLICOT's reduced system model took approximately
2000 times less CPU time when compared to a similar calculation for the full 441 dimensional
model. This, of course, is solely due to the model reduction. The calculated control inputs
are shown in �gure 5. Note that, for this speci�c case study, the microwave power controls
the heating process almost completely. The fairly rapid decrease just before the �nal time
instant tf = 90s is to allow heat di�usion from the center of the cylinder to the boundaries
(�gure 6).

Although this may not seem plausible on the basis of Lambert's law, the power distribution
of the microwaves decreases from r = 0 to r = R since the circular boundary introduces a
focussing e�ect of microwave power in the center of the cylinder causing a rapid increase
in temperature in the center. Indeed, this example demonstrates that the geometry of the
problem contributes substantially to the heating process. An interesting additional exercise
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Figure 5: Final temperatures on the surface 
1 after 90 seconds of optimally combined hot-
air/microwave heating.
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Figure 6: Optimal input pro�les for combined �-wave/forced convection heating for the
mashed potato example.
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is to calculate an optimal heating pro�le for convective control only. This was performed
for the mashed potato example using a heating time of approximately 25 minutes. For this
case SLICOT reduced the system to 29 states. The resulting input heating pro�le shows a
�T -cooking pro�le, meaning that initially the heating temperature needs to be increased to
maintain a constant gradient between the center and the boundary of the potato (�gure 7)
in order to transfer the boundary heat input most e�ciently. The oscillation after the initial
�T pro�le is to `�ne-tune' the temperature to reach exactly a uniform �nal temperature �eld
of 100 oC. In �gure 8 one can see that uniformity is reached within a range of approximately
0:1oC which is much better than the case of combined �-wave/forced convection heating.
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Figure 7: Optimal input pro�les for convection heating only.
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Figure 8: Final temperature distribution for convection heating only.

Closing Remarks

This short note has demonstrated an interesting application of the SLICOT library for
�nding optimal heating strategies for multimode combination ovens (air/microwave oven).
Our experience has shown that the SLICOT routines are very e�cient and fast solvers for
model reduction and are a useful tool in this application. Future work will involve the
application of the same routines to systems with a dimension of approximately 4000 nodes (a
test case with a 1500 node model has already been reduced to 61 states in approximately 1
hour of CPU time which is very good).
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